-
Notifications
You must be signed in to change notification settings - Fork 0
/
TBVGG3.h
730 lines (611 loc) · 21.9 KB
/
TBVGG3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
/*
--------------------------------------------------
James William Fletcher (github.com/mrbid)
AUGUST 2022 - TBVGG3
--------------------------------------------------
Tiny Binary VGG3
https://github.com/tfnn
Release Notes:
Output is a linear layer with sigmoid optional by specifying
`#define SIGMOID_OUTPUT`.
You can select between NORMAL_GLOROT or UNIFORM_GLOROT
weight initialisation by specifying `#define UNIFORM_GLOROT`
for uniform, otherwise normal is used by default.
Sigmoid output is better for normalised inputs and a linear
output is better for unnormalised inputs.
There are three supported sizes of this network, 8, 16, and 32.
You can select between them by defining `#define ADA8`, ADA16
or ADA32.
Information:
This is an adaption inspired by the VGG series of networks.
This VGG network is designed for binary classification and is
only three layers deep. It uses Global Average Pooling rather
than a final fully connected layer, additionally the final
result is again just an average of the GAP. Essentially making
this network an FCN version of the VGG network.
The VGG network was originally created by the Visual Geometry Group
of Oxford University in the United Kingdom. It was first proposed
by Karen Simonyan and Andrew Zisserman, the original paper is
available here; https://arxiv.org/abs/1409.1556
TBVGG3 (ADA16)
:: ReLU + 0 Padding
28x28 x16
> maxpool
14x14 x32
> maxpool
7x7 x64
> GAP + Average
I like to call the gradient the error at times.
Configuration;
No batching of the forward passes before backproping.
XAVIER GLOROT normal distribution weight initialisation.
I read some places online that uniform GLOROT works
better in CNN's, the truth is they both have their
score sheet of gains and losses. I find normal is a
smoother descent but uniform can reach lower losses
although this is completely subjective to my bias.
Since the original VGG paper references GLOROT with
normal distribution, this is what I chose as the defacto.
expected input RGB 28x28 pixels;
float input[3][28][28];
Preferences;
You can see that I do not make an active effort to avoid
branching, when I consider the trade off, such as with the
TBVGG3_CheckPadded() check, I think to myself do I memcpy()
to a new buffer with padding or include the padding in the
original buffer or use branches to check if entering a padded
coordinate, I chose the latter. I would rather a few extra
branches than to bloat memory in some scenarios, although
you can also see in TBVGG3_2x2MaxPool() that I choose a
negligibly higher use of memory to avoid ALU divisions.
I didn't think it was a good idea to maxpool the last
layer because there are no fully connected layers,
since it's going straight into a GAP it will make
negligible difference in the final average. Maxpooling
before a fully connected layer makes sense to reduce the
amount of parameters to a more important subset. But this
is a binary decision network, so a fully connected layer
wont have a profound impact, we just want to know if our
relevant features / filters had been activated enough to
signal YES, if not, it's a NO.
Comments;
When it came to the back propagation I just worked it out
using the knowledge and intuition I had gained from implementing
back propagation in fully connected neural networks which is a
in my opinion easier to understand. That's to say I didn't read
or check any existing documentation for implementing back prop
in CNN's. To be honest, the problem is something you can just
see in your minds eye when you think about it. You know that
you have to push a gradient backward and that process is very
much the same as in fully connected layers.
When a ReLU output is fed into a regular sigmoid function the
output of the ReLU will always be >0 and thus the output of the
sigmoid will always be 0.5 - 1.0, and the derivative will start
at 0.25 and then reduce to 0 as the sigmoid input approaches 1.
As such I have provided a suggested modification to the sigmoid
function `1-(1 / expf(x))` which will insure that the output ranges
from 0 to 1 and that the derivative will output 0.25 with an input
of 0.5.
Network size:
ADA8: 23.6 KiB (24,128 bytes)
ADA16: 92.1 KiB (94,336 bytes)
ADA32: 364.2 KiB (372,992 bytes)
*/
#ifndef TBVGG3_H
#define TBVGG3_H
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>
#define uint unsigned int
#define sint int
#ifndef LEARNING_RATE
#define LEARNING_RATE 0.001f
#endif
#ifndef GAIN
#define GAIN 0.0065f
#endif
#if !defined(ADA8) && !defined(ADA16) && !defined(ADA32)
#define ADA16
#endif
#if !defined(OPTIM_NAG) && !defined(OPTIM_SGD) && !defined(OPTIM_ADA)
#define OPTIM_ADA
#endif
#if defined(OPTIM_NAG) && !defined(NAG_MOMENTUM)
#define NAG_MOMENTUM 0.1f
#endif
#ifdef ADA8
#define L1 8
#define L2 16
#define L3 32
#define RL3F 0.03125f // reciprocal L3 as float
#endif
#ifdef ADA16
#define L1 16
#define L2 32
#define L3 64
#define RL3F 0.015625f // reciprocal L3 as float
#endif
#ifdef ADA32
#define L1 32
#define L2 64
#define L3 128
#define RL3F 0.0078125f // reciprocal L3 as float
#endif
/*
--------------------------------------
structures
--------------------------------------
*/
// network struct
struct
{
//filters:num, d, w
float l1f[L1][3 ][9];
float l2f[L2][L1][9];
float l3f[L3][L2][9];
// filter bias's
float l1fb[L1][1];
float l2fb[L2][1];
float l3fb[L3][1];
}
typedef TBVGG3_Network;
#define TBVGG3_LEARNTYPE float
#define LEARN_MAX 1.f
#define LEARN_MIN 0.f
#define NO_LEARN -1.f
/*
--------------------------------------
functions
--------------------------------------
*/
float TBVGG3_Process(TBVGG3_Network* net, const float input[3][28][28], const TBVGG3_LEARNTYPE learn);
void TBVGG3_Reset(TBVGG3_Network* net, const uint seed);
int TBVGG3_SaveNetwork(TBVGG3_Network* net, const char* file);
int TBVGG3_LoadNetwork(TBVGG3_Network* net, const char* file);
void TBVGG3_Debug(TBVGG3_Network* net);
/*
--------------------------------------
the code ...
--------------------------------------
*/
void TBVGG3_Debug(TBVGG3_Network* net)
{
float min=0.f, avg=0.f, max=0.f;
float recip_num_weights = 1.f/(L1*3*9);
for(uint i = 0; i < L1; i++)
{
for(uint j = 0; j < 3; j++)
{
for(uint k = 0; k < 9; k++)
{
const float w = net->l1f[i][j][k];
if(w < min){min = w;}
else if(w > max){max = w;}
avg += w;
}
}
}
printf("0: %+.3f %+.3f %+.3f [%+.3f]\n", min, avg*recip_num_weights, max, avg);
min=0.f, avg=0.f, max=0.f;
recip_num_weights = 1.f/(L2*L1*9);
for(uint i = 0; i < L2; i++)
{
for(uint j = 0; j < L1; j++)
{
for(uint k = 0; k < 9; k++)
{
const float w = net->l2f[i][j][k];
if(w < min){min = w;}
else if(w > max){max = w;}
avg += w;
}
}
}
printf("1: %+.3f %+.3f %+.3f [%+.3f]\n", min, avg*recip_num_weights, max, avg);
min=0.f, avg=0.f, max=0.f;
recip_num_weights = 1.f/(L3*L2*9);
for(uint i = 0; i < L3; i++)
{
for(uint j = 0; j < L2; j++)
{
for(uint k = 0; k < 9; k++)
{
const float w = net->l3f[i][j][k];
if(w < min){min = w;}
else if(w > max){max = w;}
avg += w;
}
}
}
printf("2: %+.3f %+.3f %+.3f [%+.3f]\n", min, avg*recip_num_weights, max, avg);
}
static inline float TBVGG3_RELU(const float x)
{
if(x < 0.f){return 0.f;}
return x;
}
static inline float TBVGG3_RELU_D(const float x)
{
if(x > 0.f){return 1.f;}
return 0.f;
}
#ifdef SIGMOID_OUTPUT
static inline float TBVGG3_SIGMOID(const float x)
{
return 1.f-(1.f / expf(x));
}
static inline float TBVGG3_SIGMOID_D(const float x)
{
return x * (1.f - x);
}
#endif
static inline float TBVGG3_OPTIM(const float input, const float error, float* momentum)
{
#ifdef OPTIM_ADA
const float err = error * input;
momentum[0] += err * err;
return (LEARNING_RATE / sqrtf(momentum[0] + 1e-7f)) * err;
#endif
#ifdef OPTIM_NAG
const float v = NAG_MOMENTUM * momentum[0] + ( LEARNING_RATE * error * input );
const float n = v + NAG_MOMENTUM * (v - momentum[0]);
momentum[0] = v;
return n;
#endif
#ifdef OPTIM_SGD
return LEARNING_RATE * error * input;
#endif
}
#ifdef UNIFORM_GLOROT
float TBVGG3_RandomWeight() // Uniform
{
static const float rmax = 1.f/(float)RAND_MAX;
float pr = 0.f;
while(pr == 0.f) //never return 0
{
const float rv2 = ( ( ((float)rand()) * rmax ) * 2.f ) - 1.f;
pr = roundf(rv2 * 100.f) * 0.01f; // two decimals of precision
}
return pr;
}
#else
float TBVGG3_RandomWeight() // Box Muller Normal
{
static const float rmax = 1.f/(float)RAND_MAX;
float u = ( ((float)rand()) * rmax) * 2.f - 1.f;
float v = ( ((float)rand()) * rmax) * 2.f - 1.f;
float r = u * u + v * v;
while(r == 0.f || r > 1.f)
{
u = ( ((float)rand()) * rmax) * 2.f - 1.f;
v = ( ((float)rand()) * rmax) * 2.f - 1.f;
r = u * u + v * v;
}
return u * sqrtf(-2.f * logf(r) / r);
}
#endif
void TBVGG3_Reset(TBVGG3_Network* net, const uint seed)
{
if(net == NULL){return;}
// seed random
if(seed == 0)
srand(time(0));
else
srand(seed);
// Weight Init
#ifdef UNIFORM_GLOROT
const float dividend = 6.0f; // uniform
#else
const float dividend = 2.0f; // normal
#endif
//l1f
float d = sqrtf(dividend / (3+L1));
for(uint i = 0; i < L1; i++)
for(uint j = 0; j < 3; j++)
for(uint k = 0; k < 9; k++)
net->l1f[i][j][k] = TBVGG3_RandomWeight() * d;
//l2f
d = sqrtf(dividend / (L1+L2));
for(uint i = 0; i < L2; i++)
for(uint j = 0; j < L1; j++)
for(uint k = 0; k < 9; k++)
net->l2f[i][j][k] = TBVGG3_RandomWeight() * d;
//l3f
d = sqrtf(dividend / (L2+L3));
for(uint i = 0; i < L3; i++)
for(uint j = 0; j < L2; j++)
for(uint k = 0; k < 9; k++)
net->l3f[i][j][k] = TBVGG3_RandomWeight() * d;
// reset bias
memset(net->l1fb, 0, sizeof(net->l1fb));
memset(net->l2fb, 0, sizeof(net->l2fb));
memset(net->l3fb, 0, sizeof(net->l3fb));
}
int TBVGG3_SaveNetwork(TBVGG3_Network* net, const char* file)
{
if(net == NULL){return -1;}
FILE* f = fopen(file, "wb");
if(f == NULL)
return -1;
if(fwrite(net, 1, sizeof(TBVGG3_Network), f) != sizeof(TBVGG3_Network))
{
fclose(f);
return -2;
}
fclose(f);
return 0;
}
int TBVGG3_LoadNetwork(TBVGG3_Network* net, const char* file)
{
if(net == NULL){return -1;}
FILE* f = fopen(file, "rb");
if(f == NULL)
return -1;
if(fread(net, 1, sizeof(TBVGG3_Network), f) != sizeof(TBVGG3_Network))
{
fclose(f);
return -2;
}
fclose(f);
return 0;
}
void TBVGG3_2x2MaxPool(const uint depth, const uint wh, const float input[depth][wh][wh], float output[depth][wh/2][wh/2])
{
// for every depth
for(uint d = 0; d < depth; d++)
{
// output tracking, more memory for less alu division ops
uint oi = 0, oj = 0;
// for every 2x2 chunk of input
for(uint i = 0; i < wh; i += 2, oi++)
{
for(uint j = 0; j < wh; j += 2, oj++)
{
// get max val
float max = 0.f;
if(input[d][i][j] > max)
max = input[d][i][j];
if(input[d][i][j+1] > max)
max = input[d][i][j+1];
if(input[d][i+1][j] > max)
max = input[d][i+1][j];
if(input[d][i+1][j+1] > max)
max = input[d][i+1][j+1];
// output max val
output[d][oi][oj] = max;
}
oj = 0;
}
}
}
static inline uint TBVGG3_CheckPadded(const sint x, const sint y, const uint wh)
{
if(x < 0 || y < 0 || x >= wh || y >= wh)
return 1;
return 0;
}
float TBVGG3_3x3Conv(const uint depth, const uint wh, const float input[depth][wh][wh], const uint y, const uint x, const float filter[depth][9], const float* filter_bias)
{
// input depth needs to be same as filter depth
// This will return a single float output. Call this x*y times per filter.
// It's zero padded so if TBVGG3_CheckPadded() returns 1 it's a no operation
float ro = 0.f;
sint nx = 0, ny = 0;
for(uint i = 0; i < depth; i++)
{
// lower row
nx = x-1, ny = y-1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][0];
nx = x, ny = y-1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][1];
nx = x+1, ny = y-1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][2];
// middle row
nx = x-1, ny = y;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][3];
nx = x, ny = y;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][4];
nx = x+1, ny = y;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][5];
// top row
nx = x-1, ny = y+1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][6];
nx = x, ny = y+1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][7];
nx = x+1, ny = y+1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
ro += input[i][ny][nx] * filter[i][8];
}
// bias
ro += filter_bias[0];
// return output
return TBVGG3_RELU(ro);
}
void TBVGG3_3x3ConvB(const uint depth, const uint wh, const float input[depth][wh][wh], const float error[depth][wh][wh], const uint y, const uint x, float filter[depth][9], float filter_momentum[depth][9], float* bias, float* bias_momentum)
{
// backprop version
sint nx = 0, ny = 0;
for(uint i = 0; i < depth; i++)
{
// lower row
nx = x-1, ny = y-1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][0] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][0]);
nx = x, ny = y-1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][1] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][1]);
nx = x+1, ny = y-1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][2] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][2]);
// middle row
nx = x-1, ny = y;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][3] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][3]);
nx = x, ny = y;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][4] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][4]);
nx = x+1, ny = y;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][5] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][5]);
// top row
nx = x-1, ny = y+1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][6] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][6]);
nx = x, ny = y+1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][7] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][7]);
nx = x+1, ny = y+1;
if(TBVGG3_CheckPadded(nx, ny, wh) == 0)
filter[i][8] += TBVGG3_OPTIM(input[i][ny][nx], error[i][y][x], &filter_momentum[i][8]);
// bias
bias[0] += TBVGG3_OPTIM(1, error[i][y][x], bias_momentum);
}
}
float TBVGG3_Process(TBVGG3_Network* net, const float input[3][28][28], const TBVGG3_LEARNTYPE learn)
{
if(net == NULL){return -1.337f;}
// filter momentum's
float l1fm[L1][3 ][9]={0};
float l2fm[L2][L1][9]={0};
float l3fm[L3][L2][9]={0};
// filter bias momentum's
float l1fbm[L1][1]={0};
float l2fbm[L2][1]={0};
float l3fbm[L3][1]={0};
// outputs
// d, y, x
float o1[L1][28][28];
float p1[L1][14][14]; // pooled
float o2[L2][14][14];
float p2[L2][7][7]; // pooled
float o3[L3][7][7];
// error gradients
// d, y, x
float e1[L1][28][28];
float e2[L2][14][14];
float e3[L3][7][7];
// convolve input with L1 filters
for(uint i = 0; i < L1; i++) // num filter
for(uint j = 0; j < 28; j++) // height
for(uint k = 0; k < 28; k++) // width
o1[i][j][k] = TBVGG3_3x3Conv(3, 28, input, j, k, net->l1f[i], net->l1fb[i]);
// max pool the output
TBVGG3_2x2MaxPool(L1, 28, o1, p1);
// convolve output with L2 filters
for(uint i = 0; i < L2; i++) // num filter
for(uint j = 0; j < 14; j++) // height
for(uint k = 0; k < 14; k++) // width
o2[i][j][k] = TBVGG3_3x3Conv(L1, 14, p1, j, k, net->l2f[i], net->l2fb[i]);
// max pool the output
TBVGG3_2x2MaxPool(L2, 14, o2, p2);
// convolve output with L3 filters
for(uint i = 0; i < L3; i++) // num filter
for(uint j = 0; j < 7; j++) // height
for(uint k = 0; k < 7; k++) // width
o3[i][j][k] = TBVGG3_3x3Conv(L2, 7, p2, j, k, net->l3f[i], net->l3fb[i]);
// global average pooling
float gap[L3] = {0};
for(uint i = 0; i < L3; i++)
{
for(uint j = 0; j < 7; j++)
for(uint k = 0; k < 7; k++)
gap[i] += o3[i][j][k];
gap[i] *= 0.02040816285f; // 1/49
}
// average final activation
float output = 0.f;
for(uint i = 0; i < L3; i++)
output += gap[i];
output *= RL3F;
#ifdef SIGMOID_OUTPUT
output = TBVGG3_SIGMOID(output);
#endif
// return activation else backprop
if(learn == NO_LEARN)
{
return output;
}
else
{
// error/gradient slope scaled by derivative
#ifdef SIGMOID_OUTPUT
const float g0 = TBVGG3_SIGMOID_D(output) * (learn - output);
//printf("g0: %f %f %f %f %f\n", g0, learn, output, (learn - output), TBVGG3_SIGMOID_D(output));
#else
float g0 = learn - output;
//printf("g0: %f %f %f %f\n", g0, learn, output, (learn - output));
#endif
// ********** Gradient Back Pass **********
// layer 3
float l3er = 0.f;
for(uint i = 0; i < L3; i++) // num filter
{
for(uint j = 0; j < 7; j++) // height
{
for(uint k = 0; k < 7; k++) // width
{
// set error
e3[i][j][k] = GAIN * TBVGG3_RELU_D(o3[i][j][k]) * g0;
// every output error gradient for every filter weight :: per filter
for(uint d = 0; d < L2; d++) // depth
for(uint w = 0; w < 9; w++) // weight
l3er += net->l3f[i][d][w] * e3[i][j][k];
l3er += net->l3fb[i][0] * e3[i][j][k];
}
}
}
// layer 2
float l2er = 0.f;
for(uint i = 0; i < L2; i++) // num filter
{
for(uint j = 0; j < 14; j++) // height
{
for(uint k = 0; k < 14; k++) // width
{
// set error
e2[i][j][k] = GAIN * TBVGG3_RELU_D(o2[i][j][k]) * l3er;
// every output error gradient for every filter weight :: per filter
for(uint d = 0; d < L1; d++) // depth
for(uint w = 0; w < 9; w++) // weight
l2er += net->l2f[i][d][w] * e2[i][j][k];
l2er += net->l2fb[i][0] * e2[i][j][k];
}
}
}
// layer 1
for(uint i = 0; i < L1; i++) // num filter
for(uint j = 0; j < 28; j++) // height
for(uint k = 0; k < 28; k++) // width
e1[i][j][k] = GAIN * TBVGG3_RELU_D(o1[i][j][k]) * l2er; // set error
// ********** Weight Nudge Forward Pass **********
// convolve filter 1 with layer 1 error gradients
for(uint i = 0; i < L1; i++) // num filter
for(uint j = 0; j < 28; j++) // height
for(uint k = 0; k < 28; k++) // width
TBVGG3_3x3ConvB(3, 28, input, e1, j, k, net->l1f[i], l1fm[i], net->l1fb[i], l1fbm[i]);
// convolve filter 2 with layer 2 error gradients
for(uint i = 0; i < L2; i++) // num filter
for(uint j = 0; j < 14; j++) // height
for(uint k = 0; k < 14; k++) // width
TBVGG3_3x3ConvB(L1, 14, o1, e2, j, k, net->l2f[i], l2fm[i], net->l2fb[i], l2fbm[i]);
// convolve filter 3 with layer 3 error gradients
for(uint i = 0; i < L3; i++) // num filter
for(uint j = 0; j < 7; j++) // height
for(uint k = 0; k < 7; k++) // width
TBVGG3_3x3ConvB(L2, 7, o2, e3, j, k, net->l3f[i], l3fm[i], net->l3fb[i], l3fbm[i]);
// weights nudged
}
// return activation
return output;
}
#endif