forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_yolo.py
executable file
·217 lines (197 loc) · 7.33 KB
/
benchmark_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os
import numpy as np
import datetime
import json
import pynvml
import psutil
import GPUtil
import time
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of Yolo onnx model.")
parser.add_argument(
"--image", type=str, required=False, help="Path of test image file.")
parser.add_argument(
"--cpu_num_thread",
type=int,
default=8,
help="default number of cpu thread.")
parser.add_argument(
"--device_id", type=int, default=0, help="device(gpu) id")
parser.add_argument(
"--iter_num",
required=True,
type=int,
default=300,
help="number of iterations for computing performace.")
parser.add_argument(
"--device",
default="cpu",
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--backend",
type=str,
default="default",
help="inference backend, default, ort, ov, trt, paddle, paddle_trt.")
parser.add_argument(
"--enable_trt_fp16",
type=ast.literal_eval,
default=False,
help="whether enable fp16 in trt backend")
parser.add_argument(
"--enable_collect_memory_info",
type=ast.literal_eval,
default=False,
help="whether enable collect memory info")
args = parser.parse_args()
return args
def build_option(args):
option = fd.RuntimeOption()
device = args.device
backend = args.backend
enable_trt_fp16 = args.enable_trt_fp16
option.set_cpu_thread_num(args.cpu_num_thread)
if device == "gpu":
option.use_gpu()
if backend == "ort":
option.use_ort_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend in ["trt", "paddle_trt"]:
option.use_trt_backend()
if backend == "paddle_trt":
option.enable_paddle_to_trt()
if enable_trt_fp16:
option.enable_trt_fp16()
elif backend == "default":
return option
else:
raise Exception(
"While inference with GPU, only support default/ort/paddle/trt/paddle_trt now, {} is not supported.".
format(backend))
elif device == "cpu":
if backend == "ort":
option.use_ort_backend()
elif backend == "ov":
option.use_openvino_backend()
elif backend == "paddle":
option.use_paddle_backend()
elif backend == "default":
return option
else:
raise Exception(
"While inference with CPU, only support default/ort/ov/paddle now, {} is not supported.".
format(backend))
else:
raise Exception(
"Only support device CPU/GPU now, {} is not supported.".format(
device))
return option
def get_current_memory_mb(gpu_id=None):
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
cpu_mem = info.uss / 1024. / 1024.
gpu_mem = 0
if gpu_id is not None:
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
gpu_mem = meminfo.used / 1024. / 1024.
return cpu_mem, gpu_mem
def get_current_gputil(gpu_id):
GPUs = GPUtil.getGPUs()
gpu_load = GPUs[gpu_id].load
return gpu_load
if __name__ == '__main__':
args = parse_arguments()
option = build_option(args)
model_file = args.model
gpu_id = args.device_id
enable_collect_memory_info = args.enable_collect_memory_info
end2end_statis = list()
cpu_mem = list()
gpu_mem = list()
gpu_util = list()
if args.device == "cpu":
file_path = args.model + "_model_" + args.backend + "_" + \
args.device + "_" + str(args.cpu_num_thread) + ".txt"
else:
if args.enable_trt_fp16:
file_path = args.model + "_model_" + args.backend + "_fp16_" + args.device + ".txt"
else:
file_path = args.model + "_model_" + args.backend + "_" + args.device + ".txt"
f = open(file_path, "w")
f.writelines("===={}====: \n".format(os.path.split(file_path)[-1][:-4]))
try:
if "yolox" in model_file:
model = fd.vision.detection.YOLOX(
model_file, runtime_option=option)
elif "yolov5" in model_file:
model = fd.vision.detection.YOLOv5(
model_file, runtime_option=option)
elif "yolov6" in model_file:
model = fd.vision.detection.YOLOv6(
model_file, runtime_option=option)
elif "yolov7" in model_file:
model = fd.vision.detection.YOLOv7(
model_file, runtime_option=option)
else:
raise Exception("model {} not support now in yolo series".format(
args.model))
model.enable_record_time_of_runtime()
im_ori = cv2.imread(args.image)
for i in range(args.iter_num):
im = im_ori
start = time.time()
result = model.predict(im)
end2end_statis.append(time.time() - start)
if enable_collect_memory_info:
gpu_util.append(get_current_gputil(gpu_id))
cm, gm = get_current_memory_mb(gpu_id)
cpu_mem.append(cm)
gpu_mem.append(gm)
runtime_statis = model.print_statis_info_of_runtime()
warmup_iter = args.iter_num // 5
end2end_statis_repeat = end2end_statis[warmup_iter:]
if enable_collect_memory_info:
cpu_mem_repeat = cpu_mem[warmup_iter:]
gpu_mem_repeat = gpu_mem[warmup_iter:]
gpu_util_repeat = gpu_util[warmup_iter:]
dump_result = dict()
dump_result["runtime"] = runtime_statis["avg_time"] * 1000
dump_result["end2end"] = np.mean(end2end_statis_repeat) * 1000
if enable_collect_memory_info:
dump_result["cpu_rss_mb"] = np.mean(cpu_mem_repeat)
dump_result["gpu_rss_mb"] = np.mean(gpu_mem_repeat)
dump_result["gpu_util"] = np.mean(gpu_util_repeat)
f.writelines("Runtime(ms): {} \n".format(str(dump_result["runtime"])))
f.writelines("End2End(ms): {} \n".format(str(dump_result["end2end"])))
if enable_collect_memory_info:
f.writelines("cpu_rss_mb: {} \n".format(
str(dump_result["cpu_rss_mb"])))
f.writelines("gpu_rss_mb: {} \n".format(
str(dump_result["gpu_rss_mb"])))
f.writelines("gpu_util: {} \n".format(
str(dump_result["gpu_util"])))
except:
f.writelines("!!!!!Infer Failed\n")
f.close()