-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathMLMetKE.py
executable file
·399 lines (362 loc) · 16.1 KB
/
MLMetKE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
# Copyright Xiaozhi Wang.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import os
from collections import OrderedDict
import numpy as np
import torch
import torch.nn.functional as F
import json
from fairseq.data import (
ConcatDataset,
ConcatSentencesDataset,
data_utils,
Dictionary,
BertDictionary,
encoders,
IdDataset,
indexed_dataset,
MaskTokensDataset,
NestedDictionaryDataset,
NumelDataset,
NumSamplesDataset,
PadDataset,
RightPadDataset,
PrependTokenDataset,
SortDataset,
TokenBlockDataset,
FakeNumelDataset,
TruncateDataset,
KEDataset,
RawLabelDataset,
RoundRobinZipDatasets,
KeNegDataset,
)
from fairseq.tasks import FairseqTask, register_task
@register_task('MLMetKE')
class MLMetKETask(FairseqTask):
"""Task for jointly training masked language models and Knowledge Embedding."""
@staticmethod
def add_args(parser):
"""Add task-specific arguments to the parser."""
parser.add_argument('data', help='colon separated path to data directories list, \
will be iterated upon during epochs in round-robin manner')
parser.add_argument('--KEdata', help='file prefix for knowledge embedding data')
parser.add_argument('--KEdata2', help='file prefix for the second knowledge embedding data', default='')
parser.add_argument('--sample-break-mode', default='complete', choices=['none', 'complete', 'complete_doc', 'eos'], help='If omitted or "none", fills each sample with tokens-per-sample '
'tokens. If set to "complete", splits samples only at the end '
'of sentence, but may include multiple sentences per sample. '
'"complete_doc" is similar but respects doc boundaries. '
'If set to "eos", includes only one sentence per sample.')
parser.add_argument('--tokens-per-sample', default=512, type=int,
help='max number of total tokens over all segments '
'per sample for BERT dataset')
parser.add_argument('--mask-prob', default=0.15, type=float,
help='probability of replacing a token with mask')
parser.add_argument('--leave-unmasked-prob', default=0.1, type=float,
help='probability that a masked token is unmasked')
parser.add_argument('--random-token-prob', default=0.1, type=float,
help='probability of replacing a token with a random token')
parser.add_argument('--freq-weighted-replacement', action='store_true',
help='sample random replacement words based on word frequencies')
parser.add_argument('--mask-whole-words', default=False, action='store_true',
help='mask whole words; you may also want to set --bpe')
parser.add_argument('--negative-sample-size', default=1, type=int,
help='The number of negative samples per positive sample for Knowledge Embedding' )
parser.add_argument('--ke-model', default='TransE', type=str,
help='Knowledge Embedding Method (TransE, RotatE, etc)')
parser.add_argument('--ke-head-name', default='wikiData', type=str,
help='Knowledge Embedding head name (wikiData , etc)')
parser.add_argument('--ke-head-name2', default='wordnet', type=str,
help='Knowledge Embedding head name (wikiData , etc)')
parser.add_argument('--init-token', type=int, default=None,
help='add token at the beginning of each batch item')
parser.add_argument('--separator-token', type=int, default=None,
help='add separator token between inputs')
parser.add_argument('--gamma', type=float, default=12.0)
parser.add_argument('--gamma2', type=float, default=12.0)
parser.add_argument('--nrelation', type=int, default=822)
parser.add_argument('--nrelation2', type=int, default=20)
parser.add_argument('--relation_desc', action='store_true')
parser.add_argument('--double_ke', action='store_true')
parser.add_argument('--relemb_from_desc', action='store_true')
def __init__(self, args, dictionary):
super().__init__(args)
self.dictionary = dictionary
self.seed = args.seed
# add mask token
if 'bert' in args and args.bert:
self.mask_idx = dictionary.mask_index
else:
self.mask_idx = dictionary.add_symbol('<mask>')
@classmethod
def setup_task(cls, args, **kwargs):
paths = args.data.split(':')
assert len(paths) > 0
if 'bert' in args and args.bert:
print('| bert dictionary')
dictionary = BertDictionary()
else:
dictionary = Dictionary.load(os.path.join(paths[0],'dict.txt'))
print('| dictionary: {} types'.format(len(dictionary)))
if args.freq_weighted_replacement:
print('| freq weighted mask replacement')
return cls(args, dictionary)
def load_MLM_dataset(self, split, epoch=0, combine=False):
"""Load a given dataset split.
Args:
split (str): name of the split (e.g., train, valid, test)
"""
paths = self.args.data.split(':')
assert len(paths) > 0
data_path = paths[epoch % len(paths)]
split_path = os.path.join(data_path, split)
dataset = data_utils.load_indexed_dataset(
split_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if dataset is None:
raise FileNotFoundError('Dataset not found: {} ({})'.format(split, split_path))
# create continuous blocks of tokens
dataset = TokenBlockDataset(
dataset,
dataset.sizes,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode=self.args.sample_break_mode,
)
# prepend beginning-of-sentence token (<s>, equiv. to [CLS] in BERT)
dataset = PrependTokenDataset(dataset, self.source_dictionary.bos())
# create masked input and targets
if self.args.mask_whole_words:
print('| mask whole words')
bpe = encoders.build_bpe(self.args)
if bpe is not None:
def is_beginning_of_word(i):
if i < self.source_dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = self.source_dictionary[i]
if tok.startswith('madeupword'):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
Mask_whole_words = torch.ByteTensor(list(
map(is_beginning_of_word, range(len(self.source_dictionary)))
))
else:
print('| NO mask whold words')
Mask_whole_words = None
src_dataset, tgt_dataset = MaskTokensDataset.apply_mask(
dataset,
self.source_dictionary,
pad_idx=self.source_dictionary.pad(),
mask_idx=self.mask_idx,
seed=self.args.seed,
mask_prob=self.args.mask_prob,
leave_unmasked_prob=self.args.leave_unmasked_prob,
random_token_prob=self.args.random_token_prob,
freq_weighted_replacement=self.args.freq_weighted_replacement,
mask_whole_words=Mask_whole_words,
)
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle = np.random.permutation(len(src_dataset))
dataset=SortDataset(
NestedDictionaryDataset(
{
'id': IdDataset(),
'net_input': {
'src_tokens': PadDataset(
src_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
'src_lengths': NumelDataset(src_dataset, reduce=False),
},
'target': PadDataset(
tgt_dataset,
pad_idx=self.source_dictionary.pad(),
left_pad=False,
),
'nsentences': NumSamplesDataset(),
'ntokens': NumelDataset(src_dataset, reduce=True),
},
sizes=[src_dataset.sizes],
),
sort_order=[
shuffle,
src_dataset.sizes
],
)
return dataset
def load_KE_dataset(self, split, kedata_path, epoch=0, combine=False):
paths = kedata_path.split(':')
assert len(paths) > 0
data_path = paths[epoch % len(paths)]
def get_path(type):
return os.path.join(data_path,type,split)
def desc_dataset(type, dictionary, relation_desc=None):
now_path=get_path(type)
#print(now_path)
dataset=data_utils.load_indexed_dataset(
now_path,
dictionary,
self.args.dataset_impl,
combine=combine,
)
if self.args.init_token is not None:
dataset = PrependTokenDataset(dataset, self.args.init_token)
if relation_desc is not None:
dataset = ConcatSentencesDataset(dataset, relation_desc)
dataset = TruncateDataset(dataset, self.args.tokens_per_sample) #???
dataset = RightPadDataset(dataset, pad_idx=self.source_dictionary.pad())
return dataset
assert(not (self.args.relation_desc and self.args.relemb_from_desc))
if self.args.relation_desc or self.args.relemb_from_desc:
now_path=get_path('relation_desc')
relation_desc=data_utils.load_indexed_dataset(
now_path,
self.source_dictionary,
self.args.dataset_impl,
combine=combine,
)
if self.args.relation_desc:
if self.args.separator_token is not None:
relation_desc = PrependTokenDataset(relation_desc, self.args.separator_token)
else:
raise Exception("separator_token is None")
elif self.args.relemb_from_desc:
relation_desc = PrependTokenDataset(relation_desc, self.args.init_token)
relation_desc = TruncateDataset(relation_desc, self.args.tokens_per_sample // 8) # 64
relation_desc = RightPadDataset(relation_desc, pad_idx=self.source_dictionary.pad())
else:
relation_desc = None
head=desc_dataset("head",self.source_dictionary)
tail=desc_dataset("tail",self.source_dictionary)
nHead=desc_dataset("negHead",self.source_dictionary)
nTail=desc_dataset("negTail",self.source_dictionary)
head_r=desc_dataset("head",self.source_dictionary, relation_desc if self.args.relation_desc else None)
tail_r=desc_dataset("tail",self.source_dictionary, relation_desc if self.args.relation_desc else None)
assert len(nHead)%len(head)==0, "check the KE positive and negative instances' number"
self.negative_sample_size=len(nHead)/len(head)
relation=np.load(get_path("relation")+".npy")
sizes=np.load(get_path("sizes")+".npy")
with data_utils.numpy_seed(self.args.seed + epoch):
shuffle=np.random.permutation(len(head))
net_input = {
'heads': head,
'tails': tail,
'nHeads': KeNegDataset(nHead,self.args),
'nTails': KeNegDataset(nTail,self.args),
'heads_r': head_r,
'tails_r': tail_r,
'src_lengths': FakeNumelDataset(sizes, reduce=False),
}
if self.args.relemb_from_desc:
net_input['relation_desc'] = relation_desc
dataset=SortDataset(
NestedDictionaryDataset(
{
'id':IdDataset(),
'net_input': net_input,
'target': RawLabelDataset(relation),
'nsentences':NumSamplesDataset(),
'ntokens': FakeNumelDataset(sizes, reduce=True),
},
sizes=[sizes],
),
sort_order=[shuffle],
)
return dataset
def load_dataset(self, split, epoch=0, combine=False):
MLMdataset=self.load_MLM_dataset(split,epoch,combine)
# First KE data
KEdataset=self.load_KE_dataset(split,self.args.KEdata, epoch,combine)
# Second KE data
if self.args.double_ke:
KEdataset2=self.load_KE_dataset(split,self.args.KEdata2, epoch,combine)
print("MLMdata",len(MLMdataset),"KEdata",len(KEdataset), "KEdata2", len(KEdataset2))
else:
print("MLMdata",len(MLMdataset),"KEdata",len(KEdataset))
if self.args.double_ke:
self.datasets[split]=RoundRobinZipDatasets(
OrderedDict([("MLM",MLMdataset),
("KE",KEdataset),
("KE2",KEdataset2)
]),
eval_key=None,
)
else:
self.datasets[split]=RoundRobinZipDatasets(
OrderedDict([("MLM",MLMdataset),
("KE",KEdataset)
]),
eval_key=None,
)
return self.datasets[split]
def build_dataset_for_inference(self, src_tokens, src_lengths, sort=True):
src_dataset = PadDataset(
TokenBlockDataset(
src_tokens,
src_lengths,
self.args.tokens_per_sample - 1, # one less for <s>
pad=self.source_dictionary.pad(),
eos=self.source_dictionary.eos(),
break_mode='eos',
),
pad_idx=self.source_dictionary.pad(),
left_pad=False,
)
src_dataset = PrependTokenDataset(src_dataset, self.source_dictionary.bos())
src_dataset = NestedDictionaryDataset(
{
'id': IdDataset(),
'net_input': {
'src_tokens': src_dataset,
'src_lengths': NumelDataset(src_dataset, reduce=False),
},
},
sizes=src_lengths,
)
if sort:
src_dataset = SortDataset(src_dataset, sort_order=[src_lengths])
return src_dataset
def build_model(self, args):
from fairseq import models
model = models.build_model(args, self)
model.register_ke_head(
args.ke_head_name,
gamma=args.gamma,
nrelations=args.nrelation
)
if hasattr(self.args, "double_ke") and self.args.double_ke:
model.register_ke_head(
args.ke_head_name2,
gamma=args.gamma2,
nrelations=args.nrelation2
)
return model
def max_positions(self):
return (512,2147483647)
@property
def source_dictionary(self):
return self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def get_average_masked_score(self, model, src_tokens, mask, **net_input):
"""Mask a set of tokens and return their average score."""
masked_tokens = src_tokens.clone()
masked_tokens[mask.byte()] = self.mask_idx
net_output = model(src_tokens=masked_tokens, **net_input, last_state_only=True)
lprobs = F.log_softmax(net_output[0], dim=-1, dtype=torch.float32)
lprobs = lprobs.gather(-1, src_tokens.unsqueeze(-1)).squeeze(-1)
mask = mask.type_as(lprobs)
score = (lprobs * mask).sum(dim=-1) / mask.sum(dim=-1)
return score