-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
375 lines (332 loc) · 14.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
from __future__ import division
from __future__ import print_function
import sys
sys.path.append("..")
import time
import argparse
import numpy as np
import scipy.sparse as sp
from precompute import propagation
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from torch_scatter import scatter
from utils.data_loader import load_data, accuracy, totensor
class MLP(nn.Module):
def __init__(self, num_features, num_classes, hidden_size, nlayers, use_bn, input_dropout, hidden_dropout, node_norm):
super().__init__()
if nlayers == 1:
fcs = [nn.Linear(num_features, num_classes, bias=True)]
bns = [nn.BatchNorm1d(num_features)]
else:
fcs = [nn.Linear(num_features, hidden_size, bias=True)]
bns = [nn.BatchNorm1d(num_features)]
for i in range(nlayers - 2):
fcs.append(nn.Linear(hidden_size, hidden_size, bias=True))
bns.append(nn.BatchNorm1d(hidden_size))
bns.append(nn.BatchNorm1d(hidden_size))
fcs.append(nn.Linear(hidden_size, num_classes, bias=True))
self.fcs = nn.ModuleList(fcs)
self.bns = nn.ModuleList(bns)
self.input_droprate = input_dropout
self.hidden_droprate = hidden_dropout
self.use_bn = use_bn
self.node_norm = node_norm
self.reset_param()
def reset_param(self):
for lin in self.fcs:
lin.reset_parameters()
def normalize(self, embedding):
return embedding / (1e-12 + torch.norm(embedding, p=2, dim=-1, keepdim=True))
def forward(self, X):
if self.node_norm:
X = self.normalize(X).detach()
if self.use_bn:
X = self.bns[0](X)
embs = F.dropout(X, self.input_droprate, training=self.training)#.detach()
embs = self.fcs[0](embs)
for fc, bn in zip(self.fcs[1:], self.bns[1:]):
embs = F.relu(embs)
if self.node_norm:
embs = self.normalize(embs)
if self.use_bn:
embs = bn(embs)
embs = F.dropout(embs, self.hidden_droprate, training=self.training)
embs = fc(embs)
return embs
class Grand_Plus(nn.Module):
def __init__(self, num_features, num_classes, hidden_size, nlayers, use_bn, input_dropout, hidden_dropout, dropnode_rate=0.5, node_norm=False):
super().__init__()
self.mlp = MLP(num_features, num_classes,
hidden_size, nlayers, use_bn, input_dropout, hidden_dropout, node_norm = node_norm)
self.dropnode_rate = dropnode_rate
def forward(self, X):
logits = self.mlp(X)
return logits
def random_prop(self, feats, mat_scores, mat_idx, dropnode_rate):
mat_scores = F.dropout(mat_scores, p=dropnode_rate, training=self.training)
propagated_logits = scatter(feats * mat_scores[:, None], mat_idx[:, None],
dim=0, dim_size=mat_idx[-1] + 1, reduce='sum')
mat_sum_s = scatter(mat_scores[:,None], mat_idx[:,None],
dim=0, dim_size=mat_idx[-1] + 1, reduce='sum')
return propagated_logits / (mat_sum_s + 1e-12)
def iterate_minibatches_listinputs(index, batch_size, shuffle=False):
numSamples = len(index)
if shuffle:
indices = np.arange(numSamples)
np.random.shuffle(indices)
for start_idx in range(0, numSamples, batch_size):
if start_idx + batch_size > numSamples:
end_idx = numSamples
else:
end_idx = start_idx + batch_size
if shuffle:
excerpt = indices[start_idx:end_idx]
else:
excerpt = slice(start_idx, end_idx)
yield index[excerpt]
def sample_unlabel(idx_unlabel, unlabel_batch_size, shuffle=False):
unlabel_numSamples = idx_unlabel.shape[0]
indices = np.arange(unlabel_numSamples)
if shuffle:
np.random.shuffle(indices)
excerpt = indices[:unlabel_batch_size]
return idx_unlabel[excerpt]
def clip_grad_norm(params, max_norm):
if max_norm > 0:
return torch.nn.utils.clip_grad_norm_(params, max_norm)
else:
return torch.sqrt(sum(p.grad.data.norm() ** 2 for p in params if p.grad is not None))
def consis_loss(args, logps, tem, conf):
ps = [torch.exp(p) for p in logps]
sum_p = 0.
for p in ps:
sum_p = sum_p + p
avg_p = sum_p/len(ps)
sharp_p = (torch.pow(avg_p, 1./tem) / torch.sum(torch.pow(avg_p, 1./tem), dim=1, keepdim=True)).detach()
loss = 0.
for p in ps:
if args.loss == 'kl':
loss += torch.mean((-sharp_p * torch.log(p)).sum(1)[avg_p.max(1)[0] > conf])
elif args.loss == 'l2':
loss += torch.mean((p-sharp_p).pow(2).sum(1)[avg_p.max(1)[0] > conf])
else:
raise ValueError(f"Unknown loss type: {args.loss}")
loss = loss/len(ps)
return loss
def valid(args, model, topk_adj, features, idx_val, labels, batch_size=10000):
model.eval()
outputs = []
for idx in iterate_minibatches_listinputs(idx_val, batch_size):
val_topk_adj = topk_adj[idx]
source_idx, neighbor_idx = val_topk_adj.nonzero()
mat_scores = val_topk_adj.data
val_feat = features[neighbor_idx]
mat_scores = torch.tensor(mat_scores, dtype=torch.float32)
source_idx = torch.tensor(source_idx, dtype=torch.long)
y_val = labels[idx]
if args.cuda:
val_feat = val_feat.cuda()
mat_scores = mat_scores.cuda()
source_idx = source_idx.cuda()
with torch.no_grad():
val_feat = model.random_prop(val_feat, mat_scores, source_idx, args.dropnode_rate).detach()
output = model(val_feat)
output = torch.log_softmax(output, dim=-1)
outputs.append(output)
outputs = torch.cat(outputs, dim=0)
loss_test = F.nll_loss(outputs, labels[idx_val])
acc_test = accuracy(outputs, labels[idx_val])
return loss_test.item(), acc_test.item()
def get_local_logits(model, attr_mat, batch_size=10000):
device = next(model.parameters()).device
nnodes = attr_mat.shape[0]
logits = []
with torch.set_grad_enabled(False):
for i in range(0, nnodes, batch_size):
batch_attr = torch.FloatTensor(attr_mat[i:i + batch_size]).to(device)
logits.append(model(batch_attr).to('cpu').numpy())
logits = np.row_stack(logits)
return logits
def predict(args, adj, features_np, model, idx_test, labels_org, mode='ppr', batch_size_logits=10000):
model.eval()
nprop = args.order
feats = []
if mode == 'ppr':
features_np = args.alpha * features_np
features_np_prop = features_np.copy()
deg_row = adj.sum(1).A1
deg_row_inv_alpha = np.asarray((1 - args.alpha) / np.maximum(deg_row, 1e-12))
for _ in range(nprop):
features_np = np.multiply(deg_row_inv_alpha[:, None], (adj.dot(features_np)))
features_np_prop += features_np
feats.append(features_np_prop.copy())
elif mode == 'avg':
features_np_prop = features_np.copy()
deg_row = adj.sum(1).A1
deg_row_inv = 1 / np.maximum(deg_row, 1e-12)
for _ in range(nprop):
features_np = np.multiply(deg_row_inv[:,None], (adj.dot(features_np)))
features_np_prop += features_np
features_np_prop = features_np_prop/(nprop + 1)
feats.append(features_np_prop)
elif mode == 'single':
deg_row = adj.sum(1).A1
deg_row_inv = 1 / np.maximum(deg_row, 1e-12)
for _ in range(nprop):
features_np = np.multiply(deg_row_inv[:,None], (adj.dot(features_np)))
features_np_prop = features_np
feats = [features_np_prop]
else:
raise ValueError(f"Unknown propagation mode: {mode}")
for feat in feats:
# print(feat[0])
logits = get_local_logits(
model.mlp, feat, batch_size_logits)
preds = logits.argmax(1)
correct = np.equal(preds[idx_test],
labels_org.cpu().numpy()[idx_test]).astype(float)
correct = correct.sum()
acc_test = correct / len(idx_test)
print(acc_test)
return acc_test
def main(args):
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.cuda.set_device(args.cuda_device)
device = args.cuda_device
torch.manual_seed(args.seed2)
if args.cuda:
torch.cuda.manual_seed(args.seed2)
np.random.seed(args.seed2)
dataset = args.dataset
adj, features, labels, idx_train, idx_val, idx_test, _ = load_data(
dataset_str=dataset, split_seed=args.seed1)
unlabel_num = args.unlabel_num
time_s1 = time.time()
adj = adj + sp.eye(features.shape[0])
idx_sample = np.random.permutation(
idx_test)[:unlabel_num]
idx_unlabel = np.concatenate([idx_val, idx_sample])
idx_train_unlabel = np.concatenate(
[idx_train, idx_unlabel])
indptr = np.array(adj.indptr, dtype=np.int32)
indices = np.array(adj.indices, dtype=np.int32)
graph = propagation.Graph(indptr, indices, args.seed2)
row_idx = np.zeros((idx_train_unlabel.shape[0] * args.top_k), dtype=np.int32)
col_idx = np.zeros((idx_train_unlabel.shape[0] * args.top_k), dtype=np.int32)
mat_value = np.zeros((idx_train_unlabel.shape[0] * args.top_k), dtype=np.float64)
if args.prop_mode == 'avg':
coef = list(np.ones(args.order + 1, dtype=np.float64))
elif args.prop_mode == 'ppr':
coef = [args.alpha]
for i in range(args.order):
coef.append(coef[-1] * (1-args.alpha))
elif args.prop_mode == 'single':
coef = list(np.zeros(args.order + 1, dtype=np.float64))
coef[-1] = 1.0
else:
raise ValueError(f"Unknown propagation mode: {args.prop_mode}")
print(f"propagation matrix: {args.prop_mode}")
coef = np.asarray(coef) / np.sum(coef)
graph.gfpush_omp(idx_train_unlabel, row_idx, col_idx, mat_value, coef, args.rmax, args.top_k)
topk_adj = sp.coo_matrix((mat_value, (row_idx, col_idx)), (
features.shape[0], features.shape[0]))
topk_adj = topk_adj.tocsr()
time_preprocessing = time.time() - time_s1
print(f"preprocessing done, time: {time_preprocessing}")
features_np = features
features, labels = totensor(features, labels)
n_class = labels.max().item() + 1
model = Grand_Plus(num_features=features.shape[1],
num_classes=n_class,
hidden_size=args.hidden,
nlayers=args.nlayers,
use_bn = args.use_bn,
input_dropout=args.input_droprate,
hidden_dropout=args.hidden_droprate,
dropnode_rate=args.dropnode_rate,
node_norm = args.node_norm)
optimizer = optim.Adam(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
if args.cuda:
model.cuda()
labels = labels.cuda()
loss_values = []
acc_values = []
batch_time = []
bad_counter = 0
loss_mn = np.inf
acc_mx = 0.0
best_epoch = 0
num_batch = 0
for epoch in range(args.epochs):
for train_index in iterate_minibatches_listinputs(idx_train, batch_size=args.batch_size, shuffle=True):
batch_t_s = time.time()
model.train()
optimizer.zero_grad()
unlabel_index_batch = sample_unlabel(
idx_sample, args.unlabel_batch_size, shuffle=True)
batch_index = np.concatenate((train_index, unlabel_index_batch))
batch_topk_adj = topk_adj[batch_index]
source_idx, neighbor_idx = batch_topk_adj.nonzero()
mat_scores = batch_topk_adj.data
batch_feat = features[neighbor_idx].to(device)
mat_scores = torch.tensor(mat_scores, dtype=torch.float32).to(device)
source_idx = torch.tensor(source_idx, dtype=torch.long).to(device)
y_train_batch = labels[train_index]
output_list = []
K = args.sample
loss_train = 0.
for i in range(K):
batch_feat_aug = model.random_prop(batch_feat, mat_scores, source_idx, args.dropnode_rate).detach()
output_aug = model(batch_feat_aug)
output_aug = torch.log_softmax(output_aug, dim=-1)
output_list.append(output_aug[len(train_index):])
loss_train += F.nll_loss(output_aug[:len(train_index)], y_train_batch)
loss_train = loss_train/K
args.conf = 2./n_class
loss_train += min(args.lam, (args.lam * float(num_batch)/args.warmup)) * consis_loss(args, output_list, args.tem, args.conf)
acc_train = accuracy(output_aug[:len(train_index)], y_train_batch)
loss_train.backward()
grad_norm = clip_grad_norm(model.parameters(), args.clip_norm)
optimizer.step()
batch_time.append(time.time() - batch_t_s)
if num_batch % args.eval_batch == 0:
loss_val, acc_val = valid(
args, model, topk_adj, features, idx_val, labels, args.batch_size)
loss_values.append(loss_val)
acc_values.append(acc_val)
if args.visible:
print(
f'epoch {epoch}, batch {num_batch}, validation loss {loss_val}, validation acc {acc_val}')
if acc_values[-1] >= acc_mx:
if args.stop_mode == 'acc' or (args.stop_mode == 'both' and loss_values[-1]<= loss_mn):
loss_mn = loss_values[-1]
acc_mx = acc_values[-1]
best_epoch = epoch
best_batch = num_batch
torch.save(model.state_dict(),
f"{args.model}_{dataset}.pkl")
bad_counter = 0
else:
bad_counter += 1
if bad_counter >= args.patience:
if args.visible:
print(
f'Early stop! Min loss: {loss_mn}, Max accuracy: {acc_mx}, num batch: {num_batch} num epoch: {epoch}')
break
num_batch += 1
if bad_counter >= args.patience:
break
if args.visible:
print(
f'Optimization Finished! Min loss: {loss_mn}, Max accuracy: {acc_mx}, num batch: {num_batch} num epoch: {epoch}')
if args.visible:
print('Loading {}th epoch'.format(best_epoch))
model.load_state_dict(torch.load(f"{args.model}_{dataset}.pkl"))
test_acc = predict(args, adj, features_np, model, idx_test, labels, mode = args.prop_mode)
t_total = time.time() - time_s1
print("Total time elapsed: {:.4f}s".format(t_total))
print(f"Test Accuracy {test_acc}")
return t_total, test_acc, np.mean(batch_time), num_batch