-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefault_params.yaml
37 lines (33 loc) · 1.03 KB
/
default_params.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Default configuration
# Network architecture
num_inputs: 1 # size of net input
num_outputs: 1 # size of net output
num_units: [2, 4, 4] # (hidden only) layer-wise number of neurons
num_sto: [0, 2, 2] # (hidden only) layer-wise number of stochastic neurons
variance: .05 # 'in' (fed as input), 'out' (as network outputs), or float (isotropic value)
no_bias: False # no bias terms
num_mems: [0, 0, 0] # RNN only
rnn_steps: 1 # RNN only
# training parameters
n_epochs: 10
opt_method: adam # adam, rmsprop
step_size: .01
# training logistics
size_sample: 30 # #times to sample the network per data pair
size_batch: 1 # #data pairs for each gradient estimate
weight_decay: 0. # weight decay (0 means none)
init_theta:
distr: XavierNormal # initialization
params:
scale: 1.
#snapshot: "DYNAMICALLY SET" # load from previously trained model
#dump_path: "DYNAMICALLY SET" # path to dump snapshot for restore
# debugging
debug: True
dbg_out_full: True
dbg_plot_charts: True
dbg_plot_samples:
plot: True
batch: 100
x_dim: 0
y_dim: 0