-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgestim.py
252 lines (210 loc) · 8.11 KB
/
gestim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torch
import torch.nn
import torch.multiprocessing
import numpy as np
import copy
import logging
from data import InfiniteLoader
class GradientEstimator(object):
def __init__(self, data_loader, opt, tb_logger=None, *args, **kwargs):
self.opt = opt
self.model = None
self.data_loader = data_loader
self.tb_logger = tb_logger
self.niters = 0
self.random_indices = None
def update_niters(self, niters):
self.niters = niters
def init_data_iter(self):
self.data_iter = iter(InfiniteLoader(self.data_loader))
self.estim_iter = iter(InfiniteLoader(self.data_loader))
def snap_batch(self, model):
pass
def update_sampler(self):
pass
def _get_raw_grad(self, model):
dt = self.data_iter
self.data_iter = self.estim_iter
model.zero_grad()
data = next(self.data_iter)
loss = model.criterion(model, data)
grad = torch.autograd.grad(loss, model.parameters())
self.data_iter = dt
return grad
def _bucketize(self, grad, bs, stats_nb):
"""Calculate the stats for a single bucket
Parameters:
grad (torch.Tensor): gradient vector
bs (int): bucket size
stats_nb (dict): dictionary containing norm-based statistics
"""
ig_sm_bkts = self.opt.nuq_ig_sm_bkts
variance = 0
num_params = 0
tot_sum = 0
num_buckets = int(np.ceil(len(grad) / bs))
for bucket in range(num_buckets):
start = bucket * bs
end = min((bucket + 1) * bs, len(grad))
current_bk = grad[start:end]
norm = current_bk.norm()
current_bk = current_bk / norm
b_len = len(current_bk)
if b_len != bs and ig_sm_bkts:
continue
num_params += b_len
var = torch.var(current_bk)
# update norm-less variance
variance += var * (b_len - 1)
tot_sum += torch.sum(current_bk)
stats_nb['norms'].append(norm)
stats_nb['sigmas'].append(torch.sqrt(var))
stats_nb['means'].append(torch.mean(current_bk))
return tot_sum, variance, num_params
def snap_online_mean(self, model):
"""Sample the gradient and calculate the stats
"""
stats_nb = {
'means': [],
'sigmas': [],
'norms': []
}
total_variance = 0.0
tot_sum = 0.0
num_of_samples = self.opt.nuq_number_of_samples
total_params = 0
bs = self.opt.nuq_bucket_size
lb = not self.opt.nuq_layer
for i in range(num_of_samples):
grad = self._get_raw_grad(model)
if lb:
flattened = self._flatten_lb(grad)
for i, layer in enumerate(flattened):
b_sum, b_var, b_params = self._bucketize(
layer, bs, stats_nb)
tot_sum += b_sum
total_variance += b_var
total_params += b_params
else:
flattened = self._flatten(grad)
b_sum, b_var, b_params = self._bucketize(
flattened, bs, stats_nb)
tot_sum += b_sum
total_variance += b_var
total_params += b_params
stats_nb['means'] = torch.stack(stats_nb['means']).cpu().tolist()
stats_nb['sigmas'] = torch.stack(stats_nb['sigmas']).cpu().tolist()
stats_nb['norms'] = torch.stack(stats_nb['norms']).cpu().tolist()
# Select the most significant norms
if len(stats_nb['means']) > self.opt.dist_num:
indexes = np.argsort(-np.asarray(stats_nb['norms']))[
:self.opt.dist_num]
stats_nb['means'] = np.array(stats_nb['means'])[indexes].tolist()
stats_nb['sigmas'] = np.array(stats_nb['sigmas'])[
indexes].tolist()
stats_nb['norms'] = np.array(stats_nb['norms'])[indexes].tolist()
stats = {
'nb': stats_nb,
'nl': {
'mean': (tot_sum / total_params).cpu().item(),
'sigma':
torch.sqrt(total_variance / total_params).cpu().item(),
}
}
return stats
def grad(self, model_new, in_place=False, data=None):
raise NotImplementedError('grad not implemented')
def _normalize(self, layer, bucket_size, nocat=False):
"""normalize gradients of a single layer
"""
normalized = []
num_bucket = int(np.ceil(len(layer) / bucket_size))
for bucket_i in range(num_bucket):
start = bucket_i * bucket_size
end = min((bucket_i + 1) * bucket_size, len(layer))
x_bucket = layer[start:end].clone()
norm = x_bucket.norm()
normalized.append(x_bucket / (norm + 1e-7))
if not nocat:
return torch.cat(normalized)
else:
return normalized
def grad_estim(self, model):
# ensuring continuity of data seen in training
dt = self.data_iter
self.data_iter = self.estim_iter
ret = self.grad(model)
self.data_iter = dt
return ret
def get_Ege_var(self, model, gviter):
# estimate grad mean and variance
Ege = [torch.zeros_like(g) for g in model.parameters()]
for i in range(gviter):
ge = self.grad_estim(model)
for e, g in zip(Ege, ge):
e += g
for e in Ege:
e /= gviter
nw = sum([w.numel() for w in model.parameters()])
var_e = 0
Es = [torch.zeros_like(g) for g in model.parameters()]
En = [torch.zeros_like(g) for g in model.parameters()]
for i in range(gviter):
ge = self.grad_estim(model)
v = sum([(gg-ee).pow(2).sum() for ee, gg in zip(Ege, ge)])
for s, e, g, n in zip(Es, Ege, ge, En):
s += g.pow(2)
n += (e-g).pow(2)
var_e += v/nw
var_e /= gviter
# Division by gviter cancels out in ss/nn
snr_e = sum(
[((ss+1e-10).log()-(nn+1e-10).log()).sum()
for ss, nn in zip(Es, En)])/nw
nv_e = sum([(nn/(ss+1e-7)).sum() for ss, nn in zip(Es, En)])/nw
return Ege, var_e, snr_e, nv_e
def _flatten_lb(self, gradient):
"""flatten the gradient in every layer
"""
flatt_params = []
for layer_parameters in gradient:
flatt_params.append(torch.flatten(layer_parameters))
return flatt_params
def _flatten(self, gradient):
flatt_params = []
for layer_parameters in gradient:
flatt_params.append(torch.flatten(layer_parameters))
return torch.cat(flatt_params)
def unflatten(self, gradient, parameters, tensor=False):
"""Change the shape of the gradient to the shape of the parameters
Parameters:
gradient: flattened gradient
parameters: convert the flattened gradient to the unflattened
version
tensor: convert to tonsor otherwise it will be an array
"""
shaped_gradient = []
begin = 0
for layer in parameters:
size = layer.view(-1).shape[0]
shaped_gradient.append(
gradient[begin:begin+size].view(layer.shape))
begin += size
if tensor:
return torch.stack(shaped_gradient)
else:
return shaped_gradient
def _flatt_and_normalize_lb(self, gradient, bucket_size=1024, nocat=False):
flatt_params_lb = self._flatten_lb(gradient)
normalized_buckets_lb = []
for layer in flatt_params_lb:
normalized_buckets_lb.append(
self._normalize(layer, bucket_size, nocat))
return normalized_buckets_lb
def _flatt_and_normalize(self, gradient, bucket_size=1024, nocat=False):
flatt_params = self._flatten(gradient)
return self._normalize(flatt_params, bucket_size, nocat)
def state_dict(self):
return {}
def load_state_dict(self, state):
pass