-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Visualizer.cpp
455 lines (388 loc) · 15 KB
/
Visualizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Tadas Baltrusaitis, all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace 2.0: Facial Behavior Analysis Toolkit
// Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, and Louis-Philippe Morency
// in IEEE International Conference on Automatic Face and Gesture Recognition, 2018
//
// Convolutional experts constrained local model for facial landmark detection.
// A. Zadeh, T. Baltrušaitis, and Louis-Philippe Morency,
// in Computer Vision and Pattern Recognition Workshops, 2017.
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-specific normalisation for automatic Action Unit detection
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx_ut.h"
#include "Visualizer.h"
#include "VisualizationUtils.h"
#include "RotationHelpers.h"
#include "ImageManipulationHelpers.h"
using namespace Utilities;
// For subpixel accuracy drawing
const int draw_shiftbits = 4;
const int draw_multiplier = 1 << 4;
const std::map<std::string, std::string> AUS_DESCRIPTION = {
{ "AU01", "Inner Brow Raiser " },
{ "AU02", "Outer Brow Raiser " },
{ "AU04", "Brow Lowerer " },
{ "AU05", "Upper Lid Raiser " },
{ "AU06", "Cheek Raiser " },
{ "AU07", "Lid Tightener " },
{ "AU09", "Nose Wrinkler " },
{ "AU10", "Upper Lip Raiser " },
{ "AU12", "Lip Corner Puller " },
{ "AU14", "Dimpler " },
{ "AU15", "Lip Corner Depressor" },
{ "AU17", "Chin Raiser " },
{ "AU20", "Lip stretcher " },
{ "AU23", "Lip Tightener " },
{ "AU25", "Lips part " },
{ "AU26", "Jaw Drop " },
{ "AU28", "Lip Suck " },
{ "AU45", "Blink " },
};
Visualizer::Visualizer(std::vector<std::string> arguments)
{
// By default not visualizing anything
this->vis_track = false;
this->vis_hog = false;
this->vis_align = false;
this->vis_aus = false;
for (size_t i = 0; i < arguments.size(); ++i)
{
if (arguments[i].compare("-verbose") == 0)
{
this->vis_track = true;
this->vis_align = true;
this->vis_hog = true;
this->vis_aus = true;
}
else if (arguments[i].compare("-vis-align") == 0)
{
this->vis_align = true;
}
else if (arguments[i].compare("-vis-hog") == 0)
{
this->vis_hog = true;
}
else if (arguments[i].compare("-vis-track") == 0)
{
this->vis_track = true;
}
else if (arguments[i].compare("-vis-aus") == 0)
{
this->vis_aus = true;
}
}
}
Visualizer::Visualizer(bool vis_track, bool vis_hog, bool vis_align, bool vis_aus)
{
this->vis_track = vis_track;
this->vis_hog = vis_hog;
this->vis_align = vis_align;
this->vis_aus = vis_aus;
}
// Setting the image on which to draw
void Visualizer::SetImage(const cv::Mat& canvas, float fx, float fy, float cx, float cy)
{
// Convert the image to 8 bit RGB
captured_image = canvas.clone();
this->fx = fx;
this->fy = fy;
this->cx = cx;
this->cy = cy;
// Clearing other images
hog_image = cv::Mat();
aligned_face_image = cv::Mat();
action_units_image = cv::Mat();
}
void Visualizer::SetObservationFaceAlign(const cv::Mat& aligned_face)
{
if(this->aligned_face_image.empty())
{
this->aligned_face_image = aligned_face;
}
else
{
cv::vconcat(this->aligned_face_image, aligned_face, this->aligned_face_image);
}
}
void Visualizer::SetObservationHOG(const cv::Mat_<double>& hog_descriptor, int num_cols, int num_rows)
{
if(vis_hog)
{
if (this->hog_image.empty())
{
Visualise_FHOG(hog_descriptor, num_rows, num_cols, this->hog_image);
}
else
{
cv::Mat tmp_hog;
Visualise_FHOG(hog_descriptor, num_rows, num_cols, tmp_hog);
cv::vconcat(this->hog_image, tmp_hog, this->hog_image);
}
}
}
void Visualizer::SetObservationLandmarks(const cv::Mat_<float>& landmarks_2D, double confidence, const cv::Mat_<int>& visibilities)
{
if(confidence > visualisation_boundary)
{
// Draw 2D landmarks on the image
int n = landmarks_2D.rows / 2;
// Drawing feature points
for (int i = 0; i < n; ++i)
{
if (visibilities.empty() || visibilities.at<int>(i))
{
cv::Point featurePoint(cvRound(landmarks_2D.at<float>(i) * (float)draw_multiplier), cvRound(landmarks_2D.at<float>(i + n) * (float)draw_multiplier));
// A rough heuristic for drawn point size
int thickness = (int)std::ceil(3.0* ((double)captured_image.cols) / 640.0);
int thickness_2 = (int)std::ceil(1.0* ((double)captured_image.cols) / 640.0);
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(0, 0, 255), thickness, cv::LINE_AA, draw_shiftbits);
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(255, 0, 0), thickness_2, cv::LINE_AA, draw_shiftbits);
}
else
{
// Draw a fainter point if the landmark is self occluded
cv::Point featurePoint(cvRound(landmarks_2D.at<float>(i) * (double)draw_multiplier), cvRound(landmarks_2D.at<float>(i + n) * (double)draw_multiplier));
// A rough heuristic for drawn point size
int thickness = (int)std::ceil(2.5* ((double)captured_image.cols) / 640.0);
int thickness_2 = (int)std::ceil(1.0* ((double)captured_image.cols) / 640.0);
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(0, 0, 155), thickness, cv::LINE_AA, draw_shiftbits);
cv::circle(captured_image, featurePoint, 1 * draw_multiplier, cv::Scalar(155, 0, 0), thickness_2, cv::LINE_AA, draw_shiftbits);
}
}
}
}
void Visualizer::SetObservationPose(const cv::Vec6f& pose, double confidence)
{
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
if (confidence > visualisation_boundary)
{
double vis_certainty = confidence;
if (vis_certainty > 1)
vis_certainty = 1;
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
vis_certainty = (vis_certainty - visualisation_boundary) / (1 - visualisation_boundary);
// A rough heuristic for box around the face width
int thickness = (int)std::ceil(2.0* ((double)captured_image.cols) / 640.0);
// Draw it in reddish if uncertain, blueish if certain
DrawBox(captured_image, pose, cv::Scalar(vis_certainty*255.0, 0, (1 - vis_certainty) * 255), thickness, fx, fy, cx, cy);
}
}
void Visualizer::SetObservationActionUnits(const std::vector<std::pair<std::string, double> >& au_intensities,
const std::vector<std::pair<std::string, double> >& au_occurences)
{
if (au_intensities.size() > 0 || au_occurences.size() > 0)
{
std::set<std::string> au_names;
std::map<std::string, bool> occurences_map;
std::map<std::string, double> intensities_map;
for (size_t idx = 0; idx < au_intensities.size(); idx++)
{
au_names.insert(au_intensities[idx].first);
intensities_map[au_intensities[idx].first] = au_intensities[idx].second;
}
for (size_t idx = 0; idx < au_occurences.size(); idx++)
{
au_names.insert(au_occurences[idx].first);
occurences_map[au_occurences[idx].first] = au_occurences[idx].second > 0;
}
const int AU_TRACKBAR_LENGTH = 400;
const int AU_TRACKBAR_HEIGHT = 10;
const int MARGIN_X = 185;
const int MARGIN_Y = 10;
const int nb_aus = (int) au_names.size();
// Do not reinitialize
if (action_units_image.empty())
{
action_units_image = cv::Mat(nb_aus * (AU_TRACKBAR_HEIGHT + 10) + MARGIN_Y * 2, AU_TRACKBAR_LENGTH + MARGIN_X, CV_8UC3, cv::Scalar(255, 255, 255));
}
else
{
action_units_image.setTo(255);
}
std::map<std::string, std::pair<bool, double>> aus;
// first, prepare a mapping "AU name" -> { present, intensity }
for (auto au_name : au_names)
{
// Insert the intensity and AU presense (as these do not always overlap check if they exist first)
bool occurence = false;
if (occurences_map.find(au_name) != occurences_map.end())
{
occurence = occurences_map[au_name] != 0;
}
else
{
// If we do not have an occurence label, trust the intensity one
occurence = intensities_map[au_name] > 1;
}
double intensity = 0.0;
if (intensities_map.find(au_name) != intensities_map.end())
{
intensity = intensities_map[au_name];
}
else
{
// If we do not have an intensity label, trust the occurence one
intensity = occurences_map[au_name] == 0 ? 0 : 5;
}
aus[au_name] = std::make_pair(occurence, intensity);
}
// then, build the graph
unsigned int idx = 0;
for (auto& au : aus)
{
std::string name = au.first;
bool present = au.second.first;
double intensity = au.second.second;
int offset = MARGIN_Y + idx * (AU_TRACKBAR_HEIGHT + 10);
std::ostringstream au_i;
au_i << std::setprecision(2) << std::setw(4) << std::fixed << intensity;
cv::putText(action_units_image, name, cv::Point(10, offset + 10), cv::FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(present ? 0 : 200, 0, 0), 1, cv::LINE_AA);
cv::putText(action_units_image, AUS_DESCRIPTION.at(name), cv::Point(55, offset + 10), cv::FONT_HERSHEY_SIMPLEX, 0.3, CV_RGB(0, 0, 0), 1, cv::LINE_AA);
if (present)
{
cv::putText(action_units_image, au_i.str(), cv::Point(160, offset + 10), cv::FONT_HERSHEY_SIMPLEX, 0.3, CV_RGB(0, 100, 0), 1, cv::LINE_AA);
cv::rectangle(action_units_image, cv::Point(MARGIN_X, offset),
cv::Point((int)(MARGIN_X + AU_TRACKBAR_LENGTH * intensity / 5.0), offset + AU_TRACKBAR_HEIGHT),
cv::Scalar(128, 128, 128),
cv::FILLED);
}
else
{
cv::putText(action_units_image, "0.00", cv::Point(160, offset + 10), cv::FONT_HERSHEY_SIMPLEX, 0.3, CV_RGB(0, 0, 0), 1, cv::LINE_AA);
}
idx++;
}
}
}
// Eye gaze infomration drawing, first of eye landmarks then of gaze
void Visualizer::SetObservationGaze(const cv::Point3f& gaze_direction0, const cv::Point3f& gaze_direction1, const std::vector<cv::Point2f>& eye_landmarks2d, const std::vector<cv::Point3f>& eye_landmarks3d, double confidence)
{
if(confidence > visualisation_boundary)
{
if (eye_landmarks2d.size() > 0)
{
// First draw the eye region landmarks
for (size_t i = 0; i < eye_landmarks2d.size(); ++i)
{
cv::Point featurePoint(cvRound(eye_landmarks2d[i].x * (double)draw_multiplier), cvRound(eye_landmarks2d[i].y * (double)draw_multiplier));
// A rough heuristic for drawn point size
int thickness = 1;
int thickness_2 = 1;
size_t next_point = i + 1;
if (i == 7)
next_point = 0;
if (i == 19)
next_point = 8;
if (i == 27)
next_point = 20;
if (i == 7 + 28)
next_point = 0 + 28;
if (i == 19 + 28)
next_point = 8 + 28;
if (i == 27 + 28)
next_point = 20 + 28;
cv::Point nextFeaturePoint(cvRound(eye_landmarks2d[next_point].x * (double)draw_multiplier), cvRound(eye_landmarks2d[next_point].y * (double)draw_multiplier));
if ((i < 28 && (i < 8 || i > 19)) || (i >= 28 && (i < 8 + 28 || i > 19 + 28)))
cv::line(captured_image, featurePoint, nextFeaturePoint, cv::Scalar(255, 0, 0), thickness_2, cv::LINE_AA, draw_shiftbits);
else
cv::line(captured_image, featurePoint, nextFeaturePoint, cv::Scalar(0, 0, 255), thickness_2, cv::LINE_AA, draw_shiftbits);
}
// Now draw the gaze lines themselves
cv::Mat cameraMat = (cv::Mat_<float>(3, 3) << fx, 0, cx, 0, fy, cy, 0, 0, 0);
// Grabbing the pupil location, to draw eye gaze need to know where the pupil is
cv::Point3f pupil_left(0, 0, 0);
cv::Point3f pupil_right(0, 0, 0);
for (size_t i = 0; i < 8; ++i)
{
pupil_left = pupil_left + eye_landmarks3d[i];
pupil_right = pupil_right + eye_landmarks3d[i + eye_landmarks3d.size()/2];
}
pupil_left = pupil_left / 8;
pupil_right = pupil_right / 8;
std::vector<cv::Point3f> points_left;
points_left.push_back(cv::Point3f(pupil_left));
points_left.push_back(cv::Point3f(pupil_left) + cv::Point3f(gaze_direction0)*50.0);
std::vector<cv::Point3f> points_right;
points_right.push_back(cv::Point3f(pupil_right));
points_right.push_back(cv::Point3f(pupil_right) + cv::Point3f(gaze_direction1)*50.0);
cv::Mat_<float> proj_points;
cv::Mat_<float> mesh_0 = (cv::Mat_<float>(2, 3) << points_left[0].x, points_left[0].y, points_left[0].z, points_left[1].x, points_left[1].y, points_left[1].z);
Project(proj_points, mesh_0, fx, fy, cx, cy);
cv::line(captured_image, cv::Point(cvRound(proj_points.at<float>(0, 0) * (float)draw_multiplier), cvRound(proj_points.at<float>(0, 1) * (float)draw_multiplier)),
cv::Point(cvRound(proj_points.at<float>(1, 0) * (float)draw_multiplier), cvRound(proj_points.at<float>(1, 1) * (float)draw_multiplier)), cv::Scalar(110, 220, 0), 2, cv::LINE_AA, draw_shiftbits);
cv::Mat_<float> mesh_1 = (cv::Mat_<float>(2, 3) << points_right[0].x, points_right[0].y, points_right[0].z, points_right[1].x, points_right[1].y, points_right[1].z);
Project(proj_points, mesh_1, fx, fy, cx, cy);
cv::line(captured_image, cv::Point(cvRound(proj_points.at<float>(0, 0) * (float)draw_multiplier), cvRound(proj_points.at<float>(0, 1) * (float)draw_multiplier)),
cv::Point(cvRound(proj_points.at<float>(1, 0) * (float)draw_multiplier), cvRound(proj_points.at<float>(1, 1) * (float)draw_multiplier)), cv::Scalar(110, 220, 0), 2, cv::LINE_AA, draw_shiftbits);
}
}
}
void Visualizer::SetFps(double fps)
{
// Write out the framerate on the image before displaying it
char fpsC[255];
std::sprintf(fpsC, "%d", (int)fps);
std::string fpsSt("FPS:");
fpsSt += fpsC;
cv::putText(captured_image, fpsSt, cv::Point(10, 20), cv::FONT_HERSHEY_SIMPLEX, 0.5, CV_RGB(255, 0, 0), 1, cv::LINE_AA);
}
char Visualizer::ShowObservation()
{
bool ovservation_shown = false;
if (vis_align && !aligned_face_image.empty())
{
cv::imshow("sim_warp", aligned_face_image);
ovservation_shown = true;
}
if (vis_hog && !hog_image.empty())
{
cv::imshow("hog", hog_image);
ovservation_shown = true;
}
if (vis_aus && !action_units_image.empty())
{
cv::imshow("action units", action_units_image);
ovservation_shown = true;
}
if (vis_track)
{
cv::imshow("tracking result", captured_image);
ovservation_shown = true;
}
// Only perform waitKey if something was shown
char result = '\0';
if (ovservation_shown)
{
result = cv::waitKey(1);
}
return result;
}
cv::Mat Visualizer::GetVisImage()
{
return captured_image;
}
cv::Mat Visualizer::GetHOGVis()
{
return hog_image;
}