|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | +# Adapted from https://huggingface.co/boltuix/NeuroBERT-NER |
| 4 | + |
| 5 | +""" |
| 6 | +Example online usage of Pooling API for Named Entity Recognition (NER). |
| 7 | +
|
| 8 | +Run `vllm serve <model> --runner pooling` |
| 9 | +to start up the server in vLLM. e.g. |
| 10 | +
|
| 11 | +vllm serve boltuix/NeuroBERT-NER |
| 12 | +""" |
| 13 | + |
| 14 | +import argparse |
| 15 | + |
| 16 | +import requests |
| 17 | +import torch |
| 18 | + |
| 19 | + |
| 20 | +def post_http_request(prompt: dict, api_url: str) -> requests.Response: |
| 21 | + headers = {"User-Agent": "Test Client"} |
| 22 | + response = requests.post(api_url, headers=headers, json=prompt) |
| 23 | + return response |
| 24 | + |
| 25 | + |
| 26 | +def parse_args(): |
| 27 | + parser = argparse.ArgumentParser() |
| 28 | + parser.add_argument("--host", type=str, default="localhost") |
| 29 | + parser.add_argument("--port", type=int, default=8000) |
| 30 | + parser.add_argument("--model", type=str, default="boltuix/NeuroBERT-NER") |
| 31 | + |
| 32 | + return parser.parse_args() |
| 33 | + |
| 34 | + |
| 35 | +def main(args): |
| 36 | + from transformers import AutoConfig, AutoTokenizer |
| 37 | + |
| 38 | + api_url = f"http://{args.host}:{args.port}/pooling" |
| 39 | + model_name = args.model |
| 40 | + |
| 41 | + # Load tokenizer and config |
| 42 | + tokenizer = AutoTokenizer.from_pretrained(model_name) |
| 43 | + config = AutoConfig.from_pretrained(model_name) |
| 44 | + label_map = config.id2label |
| 45 | + |
| 46 | + # Input text |
| 47 | + text = "Barack Obama visited Microsoft headquarters in Seattle on January 2025." |
| 48 | + prompt = {"model": model_name, "input": text} |
| 49 | + |
| 50 | + pooling_response = post_http_request(prompt=prompt, api_url=api_url) |
| 51 | + |
| 52 | + # Run inference |
| 53 | + output = pooling_response.json()["data"][0] |
| 54 | + logits = torch.tensor(output["data"]) |
| 55 | + predictions = logits.argmax(dim=-1) |
| 56 | + inputs = tokenizer(text, return_tensors="pt") |
| 57 | + |
| 58 | + # Map predictions to labels |
| 59 | + tokens = tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) |
| 60 | + labels = [label_map[p.item()] for p in predictions] |
| 61 | + assert len(tokens) == len(predictions) |
| 62 | + |
| 63 | + # Print results |
| 64 | + for token, label in zip(tokens, labels): |
| 65 | + if token not in tokenizer.all_special_tokens: |
| 66 | + print(f"{token:15} → {label}") |
| 67 | + |
| 68 | + |
| 69 | +if __name__ == "__main__": |
| 70 | + args = parse_args() |
| 71 | + main(args) |
0 commit comments