-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
41 lines (32 loc) · 1.38 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from nltk.tokenize import word_tokenize
import pickle
# Load the classifier and TF-IDF vectorizer from files
with open('naive_bayes_classifier.pkl', 'rb') as file:
model = pickle.load(file)
with open('tfidf_vectorizer.pkl', 'rb') as file:
tfidf_vectorizer = pickle.load(file)
# Set page title and layout
st.set_page_config(page_title="Hate Speech Detection", page_icon=":angry:", layout="wide")
# Set title and subtitle
st.title('Hate Speech Detection using TF-IDF')
st.write("This application uses a TF-IDF vectorizer and a trained Multinomial Naive Bayes classifier to detect hate speech.")
# Text input for user to input their text
user_text = st.text_input('Enter your text:')
# Button to trigger text classification
if st.button('Classify'):
# Tokenize the user input
tokenized_text = word_tokenize(user_text.lower())
# Convert tokenized text into TF-IDF vectors
text_vector = tfidf_vectorizer.transform([' '.join(tokenized_text)])
# Make prediction
prediction = model.predict(text_vector)
if prediction == 1:
st.write("Hate Speech")
elif prediction == 0:
st.write("Offence Not Allowed Baby!")
else:
st.write("Everything is Normal Bitch")