Skip to content

Files

Latest commit

6aeac64 Β· Feb 24, 2025

History

History
120 lines (84 loc) Β· 2.9 KB

README.md

File metadata and controls

120 lines (84 loc) Β· 2.9 KB

🎬 Movie Review Sentiment Analyzer

πŸ“ Overview

The Movie Review Sentiment Analyzer is a machine learning-powered application that classifies movie reviews as Positive, Negative, or Neutral based on sentiment analysis. Using a trained Recurrent Neural Network (RNN), the app predicts the sentiment of user-inputted text and provides a confidence score.

✨ Features

  • πŸ“ Text-based Sentiment Analysis
  • πŸ“Š Confidence Score for Sentiment Prediction
  • 🎭 Emoji-based Sentiment Representation
  • 🎨 Modern, User-Friendly UI with Streamlit
  • πŸ“‰ Visual Progress Bar for Sentiment Strength

πŸ›  Technology Stack

  • Python
  • Streamlit
  • TensorFlow/Keras
  • NumPy & Pandas
  • RNN

πŸš€ Getting Started

Prerequisites

  • Python 3.8+
  • TensorFlow installed
  • Pretrained model (SimpleRnn_imdb.h5)
  • Tokenizer file (tokenizer.pkl)

Installation

  1. Clone the repository
git clone https://github.com/taskmaster-1/sentiment-analyzer.git
cd sentiment-analyzer
  1. Create a virtual environment
python -m venv venv
source venv/bin/activate  # On Windows, use `venv\Scripts\activate`
  1. Install dependencies
pip install -r requirements.txt

Running the App

streamlit run app.py

πŸ“¦ Requirements File

Create a requirements.txt with:

streamlit
tensorflow
numpy
pandas
pickle-mixin

🀝 Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

πŸ”’ Security

  • Never commit your model files (SimpleRnn_imdb.h5) or tokenizer files (tokenizer.pkl) to public repositories
  • Use .gitignore to exclude sensitive files

πŸ“Š How It Works

  1. Enter a movie review in the text box
  2. Click the "Analyze Sentiment" button
  3. The model predicts the sentiment (Positive, Negative, or Neutral)
  4. The confidence score is displayed
  5. A visual progress bar shows sentiment strength

πŸ“ˆ Future Roadmap

  • Improve model accuracy with advanced NLP techniques
  • Deploy as a web app using Streamlit Sharing or Render
  • Support for multiple languages
  • Live API for sentiment prediction

🏷️ Versioning

Current Version: 1.0.0

πŸ“„ License

Distributed under the MIT License. See LICENSE for more information.

🌐 Deployed Application

πŸ”— Live

πŸ“ž Contact

Gmail - vivekyad5223@gmail.com

Project Link: https://github.com/taskmaster-1/sentiment-analyzer

πŸ™ Acknowledgements