-
Notifications
You must be signed in to change notification settings - Fork 199
/
Copy pathbert_smart_batch.py
97 lines (80 loc) · 3.31 KB
/
bert_smart_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Copyright (C) 2020 THL A29 Limited, a Tencent company.
# All rights reserved.
# Licensed under the BSD 3-Clause License (the "License"); you may
# not use this file except in compliance with the License. You may
# obtain a copy of the License at
# https://opensource.org/licenses/BSD-3-Clause
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" basis,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
# See the AUTHORS file for names of contributors.
import torch
import transformers
import turbo_transformers
import enum
import time
import sys
def serial_bert_inference(torch_model, input_list):
res_list = []
for input_seq in input_list:
res, _ = torch_model(input_seq)
res_list.append(res)
for i in range(len(res_list)):
if i == 0:
concat_res = res_list[i]
else:
concat_res = torch.cat((concat_res, res_list[i]), 1)
return concat_res
def batch_bert_inference(turbo_model, input_list, query_seq_len_list):
res, _ = turbo_model(input_list, query_seq_len_list)
return res
def test_smart_batch(use_cuda: bool):
test_device = torch.device('cuda:0') if use_cuda else \
torch.device('cpu:0')
cfg = transformers.BertConfig(attention_probs_dropout_prob=0.0,
hidden_dropout_prob=0.0)
torch_model = transformers.BertModel(cfg)
# model_id = "bert-base-uncased"
# torch_model = transformers.BertModel.from_pretrained(model_id)
torch_model.eval()
torch_model.to(test_device)
torch.set_grad_enabled(False)
cfg = torch_model.config
# use 4 threads for computing
if not use_cuda:
turbo_transformers.set_num_threads(4)
# Initialize a turbo BertModel with smart batching from torch model.
turbo_model = turbo_transformers.BertModelSmartBatch.from_torch(
torch_model)
# a batch of queries with different lengths.
query_seq_len_list = [18, 2, 3, 51]
input_list = []
# generate random inputs. Of course you can use real data.
for query_seq_len in query_seq_len_list:
input_seq = torch.randint(low=0,
high=cfg.vocab_size - 1,
size=(1, query_seq_len),
dtype=torch.long,
device=test_device)
input_list.append(input_seq)
# start inference
s_res = serial_bert_inference(torch_model, input_list)
b_res = batch_bert_inference(turbo_model, input_list, query_seq_len_list)
print(torch.max(torch.abs(b_res - s_res)))
assert (torch.max(torch.abs(b_res - s_res)) < 1e-2)
start_time = time.time()
for i in range(10):
serial_bert_inference(torch_model, input_list)
end_time = time.time()
print("\ntorch time consum: {}".format(end_time - start_time))
start_time = time.time()
for i in range(10):
batch_bert_inference(turbo_model, input_list, query_seq_len_list)
end_time = time.time()
print("\nturbo time consum: {}".format(end_time - start_time))
if __name__ == "__main__":
if torch.cuda.is_available():
test_smart_batch(True)
test_smart_batch(False)