Skip to content

Releases: TensorSpeech/TensorFlowASR

TensorFlowASR v0.8.0

09 Mar 17:45
fa85aa1
Compare
Choose a tag to compare

Release Notes

  • Update stft
  • Update WER and CER Metrics

TensorFlowASR v0.7.8

24 Feb 12:28
5fbd6a8
Compare
Choose a tag to compare

Release Notes

  • Fix duplicate log softmax in rnnt loss in tf

TensorFlowASR v0.7.7

21 Feb 16:32
112a0c3
Compare
Choose a tag to compare

Release Notes

  • Support for infinite dataset (for using steps_per_execution)
  • Support for storing hdf5 to cloud
  • Update training script using keras builtin functions

TensorFlowASR v0.7.6

19 Feb 18:08
Compare
Choose a tag to compare

Release Notes

  • Replace max lengths by metadata to store other dataset information, such as number of entries
  • Update TPU example script to use steps_per_execution

TensorFlowASR v0.7.5

16 Feb 14:36
Compare
Choose a tag to compare

Release Notes

  • Move dependencies to requirements.txt
  • Add option to use loss scale in keras compile
  • Add max lengths computation in ASR dataset
  • Support TPU and static shape training

TensorFlowASR v0.7.4

13 Feb 09:15
Compare
Choose a tag to compare

Release Notes

  • Fixed rnnt loss in pure tf for batch size 1
  • Update example configs

TensorFlowASR v0.7.3

12 Feb 09:31
Compare
Choose a tag to compare

Release Notes

  • Fix Transducer Batch Recognition
  • Cast step to float32 in schedules
  • Update create tfrecords and add subwords scripts

TensorFlowASR v0.7.2

07 Feb 16:15
Compare
Choose a tag to compare

Release Notes

  • Fix some minor bugs in dataset

TensorFlowASR v0.7.1

31 Jan 10:14
Compare
Choose a tag to compare

Release Notes

  • Update dataset config
  • Update ASRDataset with option to use preprocessing in pure tf (not tf.numpy_function)
  • Add Transducer Greedy Decoding V2 from https://arxiv.org/pdf/1801.00841.pdf
  • Update documents and results
  • Update examples scripts to use new dataset config

TensorFlowASR v0.7.0

23 Jan 17:58
3a4d4ee
Compare
Choose a tag to compare

Release Notes

  • Implement Slice Dataset that yield data in keras format (x, y)
  • Implement TFRecord Dataset that yield data in keras format (x, y)
  • Add new RnntLoss subclass of tf.keras.losses.Loss to use in compile function of tf.keras.Model
  • Add Transducer with custom train_step and test_step that uses RnntLoss
  • Add new CtcLoss subclass of tf.keras.losses.Loss to use in compile function of tf.keras.Model
  • Add CtcModel with custom train_step and test_step that uses CtcLoss