-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
107 lines (83 loc) · 4.56 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import argparse
import random
import warnings
import numpy as np
import torch
import torch.backends.cudnn
# import torch.distributed as dist
# import torch.nn.parallel as parallel
import torch.utils.data as data
import dataset as ds
import engine
from models import Model
def get_args_parser():
warnings.filterwarnings('ignore')
parser = argparse.ArgumentParser()
parser.add_argument('--random_seed', default=19970423, type=int)
parser.add_argument('--root', default='../../DataSet/ASAP', type=str)
parser.add_argument('--prompt_idx', default=1, type=int, help='{1, 2, 3, 4, 5, 6, 7, 8}')
parser.add_argument('--weight_init', default=0.9, type=float)
parser.add_argument('--training_type', default='inductive', type=str, help='{inductive, transductive}')
parser.add_argument('--num_epochs', default=30, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--lr', default=0.00005, type=float)
parser.add_argument('--memory_lr', default=0.05, type=float)
parser.add_argument('--weight_decay', default=0.0005, type=float)
return parser.parse_args()
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def run(args):
num_classes = ds.NUM_SCORES[args.prompt_idx]
train_dataset, dev_dataset, test_dataset = ds.load_datasets(args.root, args.prompt_idx)
num_features = 20
model = Model(num_features, args.weight_init).cuda()
# model = parallel.DistributedDataParallel(model, device_ids=[args.local_rank], find_unused_parameters=True)
optim_parameters = [
{'params': [p for n, p in model.named_parameters() if not n.endswith('weight_memory') and p.requires_grad], 'lr': args.lr, 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if n.endswith('weight_memory') and p.requires_grad], 'lr': args.memory_lr, 'weight_decay': args.weight_decay}
]
optimizer = torch.optim.AdamW(optim_parameters)
if args.training_type == 'transductive':
dataset = data.ConcatDataset([train_dataset, dev_dataset, test_dataset])
# train_dist_sampler = data.distributed.DistributedSampler(dataset)
train_dataloader = data.DataLoader(dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True, drop_last=True, shuffle=True)
test_dataloader = data.DataLoader(dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True, shuffle=False)
elif args.training_type == 'inductive':
# train_dist_sampler = data.distributed.DistributedSampler(train_dataset)
train_dataloader = data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True, drop_last=True, shuffle=True)
test_dataloader = data.DataLoader(test_dataset, batch_size=args.batch_size, num_workers=4, pin_memory=True, shuffle=False)
else:
raise NotImplementedError
min_ep_loss = 100
best_reg_qwk, best_u_qwk, best_gt_qwk, best_t_qwk, best_n_qwk = 0, 0, 0, 0, 0
for ep_idx in range(args.num_epochs):
# train_dist_sampler.set_epoch(ep_idx)
ep_loss, train_t = engine.train(model, optimizer, train_dataloader)
# dist.reduce(ep_loss, dst=args.master_rank, op=dist.ReduceOp.SUM)
# if args.local_rank == args.master_rank:
# ep_loss = ep_loss / dist.get_world_size()
gt_qwk, u_qwk, reg_qwk, t_qwk, n_qwk, test_t = engine.evaluate(model, test_dataloader, num_classes)
info = f'P{args.prompt_idx};Epoch={ep_idx + 1}/{args.num_epochs};TrainT={train_t:.1f}s;TestT={test_t:.1f}s;L={ep_loss:.4f};QWK={reg_qwk:.4f};'
if ep_loss <= min_ep_loss:
min_ep_loss = ep_loss
best_reg_qwk, best_u_qwk, best_gt_qwk, best_t_qwk, best_n_qwk = reg_qwk, u_qwk, gt_qwk, t_qwk, n_qwk
torch.save(model.state_dict(), f'{args.training_type}_P{args.prompt_idx}.pkl')
info += f'minL={min_ep_loss:.4f};BestQWK={best_reg_qwk:.4f}.'
print(info)
info = f' R, G, U, T, N | FINAL | prompt {args.prompt_idx}\n'
info += f'{best_reg_qwk:.4f}, {best_gt_qwk:.4f}, {best_u_qwk:.4f}, {best_t_qwk:.4f}, {best_n_qwk:.4f}\n'
print(info)
def __main__():
args = get_args_parser()
# dist.init_process_group(backend='nccl')
# set_random_seed(args.random_seed + args.local_rank)
set_random_seed(args.random_seed)
# torch.cuda.set_device(torch.device(f'cuda:{args.local_rank}'))
run(args)
if __name__ == '__main__':
__main__()