-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
gcd_of_n_numbers.cpp
114 lines (107 loc) · 3.19 KB
/
gcd_of_n_numbers.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/**
* @file
* @brief This program aims at calculating the GCD of n numbers
*
* @details
* The GCD of n numbers can be calculated by
* repeatedly calculating the GCDs of pairs of numbers
* i.e. \f$\gcd(a, b, c)\f$ = \f$\gcd(\gcd(a, b), c)\f$
* Euclidean algorithm helps calculate the GCD of each pair of numbers
* efficiently
*
* @see gcd_iterative_euclidean.cpp, gcd_recursive_euclidean.cpp
*/
#include <algorithm> /// for std::abs
#include <array> /// for std::array
#include <cassert> /// for assert
#include <iostream> /// for IO operations
/**
* @namespace math
* @brief Maths algorithms
*/
namespace math {
/**
* @namespace gcd_of_n_numbers
* @brief Compute GCD of numbers in an array
*/
namespace gcd_of_n_numbers {
/**
* @brief Function to compute GCD of 2 numbers x and y
* @param x First number
* @param y Second number
* @return GCD of x and y via recursion
*/
int gcd_two(int x, int y) {
// base cases
if (y == 0) {
return x;
}
if (x == 0) {
return y;
}
return gcd_two(y, x % y); // Euclidean method
}
/**
* @brief Function to check if all elements in the array are 0
* @param a Array of numbers
* @return 'True' if all elements are 0
* @return 'False' if not all elements are 0
*/
template <std::size_t n>
bool check_all_zeros(const std::array<int, n> &a) {
// Use std::all_of to simplify zero-checking
return std::all_of(a.begin(), a.end(), [](int x) { return x == 0; });
}
/**
* @brief Main program to compute GCD using the Euclidean algorithm
* @param a Array of integers to compute GCD for
* @return GCD of the numbers in the array or std::nullopt if undefined
*/
template <std::size_t n>
int gcd(const std::array<int, n> &a) {
// GCD is undefined if all elements in the array are 0
if (check_all_zeros(a)) {
return -1; // Use std::optional to represent undefined GCD
}
// divisors can be negative, we only want the positive value
int result = std::abs(a[0]);
for (std::size_t i = 1; i < n; ++i) {
result = gcd_two(result, std::abs(a[i]));
if (result == 1) {
break; // Further computations still result in gcd of 1
}
}
return result;
}
} // namespace gcd_of_n_numbers
} // namespace math
/**
* @brief Self-test implementation
* @return void
*/
static void test() {
std::array<int, 1> array_1 = {0};
std::array<int, 1> array_2 = {1};
std::array<int, 2> array_3 = {0, 2};
std::array<int, 3> array_4 = {-60, 24, 18};
std::array<int, 4> array_5 = {100, -100, -100, 200};
std::array<int, 5> array_6 = {0, 0, 0, 0, 0};
std::array<int, 7> array_7 = {10350, -24150, 0, 17250, 37950, -127650, 51750};
std::array<int, 7> array_8 = {9500000, -12121200, 0, 4444, 0, 0, 123456789};
assert(math::gcd_of_n_numbers::gcd(array_1) == -1);
assert(math::gcd_of_n_numbers::gcd(array_2) == 1);
assert(math::gcd_of_n_numbers::gcd(array_3) == 2);
assert(math::gcd_of_n_numbers::gcd(array_4) == 6);
assert(math::gcd_of_n_numbers::gcd(array_5) == 100);
assert(math::gcd_of_n_numbers::gcd(array_6) == -1);
assert(math::gcd_of_n_numbers::gcd(array_7) == 3450);
assert(math::gcd_of_n_numbers::gcd(array_8) == 1);
}
/**
* @brief Main function
* @return 0 on exit
*/
int main() {
test(); // run self-test implementation
return 0;
}