-
-
Notifications
You must be signed in to change notification settings - Fork 7.3k
/
ode_semi_implicit_euler.cpp
211 lines (186 loc) · 6.62 KB
/
ode_semi_implicit_euler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/**
* \file
* \authors [Krishna Vedala](https://github.com/kvedala)
* \brief Solve a multivariable first order [ordinary differential equation
* (ODEs)](https://en.wikipedia.org/wiki/Ordinary_differential_equation) using
* [semi implicit Euler
* method](https://en.wikipedia.org/wiki/Semi-implicit_Euler_method)
*
* \details
* The ODE being solved is:
* \f{eqnarray*}{
* \dot{u} &=& v\\
* \dot{v} &=& -\omega^2 u\\
* \omega &=& 1\\
* [x_0, u_0, v_0] &=& [0,1,0]\qquad\ldots\text{(initial values)}
* \f}
* The exact solution for the above problem is:
* \f{eqnarray*}{
* u(x) &=& \cos(x)\\
* v(x) &=& -\sin(x)\\
* \f}
* The computation results are stored to a text file `semi_implicit_euler.csv`
* and the exact soltuion results in `exact.csv` for comparison. <img
* src="https://raw.githubusercontent.com/TheAlgorithms/C-Plus-Plus/docs/images/numerical_methods/ode_semi_implicit_euler.svg"
* alt="Implementation solution"/>
*
* To implement [Van der Pol
* oscillator](https://en.wikipedia.org/wiki/Van_der_Pol_oscillator), change the
* ::problem function to:
* ```cpp
* const double mu = 2.0;
* dy[0] = y[1];
* dy[1] = mu * (1.f - y[0] * y[0]) * y[1] - y[0];
* ```
* \see ode_midpoint_euler.cpp, ode_forward_euler.cpp
*/
#include <cmath>
#include <ctime>
#include <fstream>
#include <iostream>
#include <valarray>
/**
* @brief Problem statement for a system with first-order differential
* equations. Updates the system differential variables.
* \note This function can be updated to and ode of any order.
*
* @param[in] x independent variable(s)
* @param[in,out] y dependent variable(s)
* @param[in,out] dy first-derivative of dependent variable(s)
*/
void problem(const double &x, std::valarray<double> *y,
std::valarray<double> *dy) {
const double omega = 1.F; // some const for the problem
dy[0][0] = y[0][1]; // x dot
dy[0][1] = -omega * omega * y[0][0]; // y dot
}
/**
* @brief Exact solution of the problem. Used for solution comparison.
*
* @param[in] x independent variable
* @param[in,out] y dependent variable
*/
void exact_solution(const double &x, std::valarray<double> *y) {
y[0][0] = std::cos(x);
y[0][1] = -std::sin(x);
}
/** \addtogroup ode Ordinary Differential Equations
* @{
*/
/**
* @brief Compute next step approximation using the semi-implicit-Euler
* method. @f[y_{n+1}=y_n + dx\cdot f\left(x_n,y_n\right)@f]
* @param[in] dx step size
* @param[in] x take \f$x_n\f$ and compute \f$x_{n+1}\f$
* @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$
* @param[in,out] dy compute \f$f\left(x_n,y_n\right)\f$
*/
void semi_implicit_euler_step(const double dx, const double &x,
std::valarray<double> *y,
std::valarray<double> *dy) {
problem(x, y, dy); // update dy once
y[0][0] += dx * dy[0][0]; // update y0
problem(x, y, dy); // update dy once more
dy[0][0] = 0.f; // ignore y0
y[0] += dy[0] * dx; // update remaining using new dy
}
/**
* @brief Compute approximation using the semi-implicit-Euler
* method in the given limits.
* @param[in] dx step size
* @param[in] x0 initial value of independent variable
* @param[in] x_max final value of independent variable
* @param[in,out] y take \f$y_n\f$ and compute \f$y_{n+1}\f$
* @param[in] save_to_file flag to save results to a CSV file (1) or not (0)
* @returns time taken for computation in seconds
*/
double semi_implicit_euler(double dx, double x0, double x_max,
std::valarray<double> *y,
bool save_to_file = false) {
std::valarray<double> dy = y[0];
std::ofstream fp;
if (save_to_file) {
fp.open("semi_implicit_euler.csv", std::ofstream::out);
if (!fp.is_open()) {
std::perror("Error! ");
}
}
std::size_t L = y->size();
/* start integration */
std::clock_t t1 = std::clock();
double x = x0;
do { // iterate for each step of independent variable
if (save_to_file && fp.is_open()) {
// write to file
fp << x << ",";
for (int i = 0; i < L - 1; i++) {
fp << y[0][i] << ",";
}
fp << y[0][L - 1] << "\n";
}
semi_implicit_euler_step(dx, x, y, &dy); // perform integration
x += dx; // update step
} while (x <= x_max); // till upper limit of independent variable
/* end of integration */
std::clock_t t2 = std::clock();
if (fp.is_open())
fp.close();
return static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
}
/** @} */
/**
* Function to compute and save exact solution for comparison
*
* \param [in] X0 initial value of independent variable
* \param [in] X_MAX final value of independent variable
* \param [in] step_size independent variable step size
* \param [in] Y0 initial values of dependent variables
*/
void save_exact_solution(const double &X0, const double &X_MAX,
const double &step_size,
const std::valarray<double> &Y0) {
double x = X0;
std::valarray<double> y = Y0;
std::ofstream fp("exact.csv", std::ostream::out);
if (!fp.is_open()) {
std::perror("Error! ");
return;
}
std::cout << "Finding exact solution\n";
std::clock_t t1 = std::clock();
do {
fp << x << ",";
for (int i = 0; i < y.size() - 1; i++) {
fp << y[i] << ",";
}
fp << y[y.size() - 1] << "\n";
exact_solution(x, &y);
x += step_size;
} while (x <= X_MAX);
std::clock_t t2 = std::clock();
double total_time = static_cast<double>(t2 - t1) / CLOCKS_PER_SEC;
std::cout << "\tTime = " << total_time << " ms\n";
fp.close();
}
/**
* Main Function
*/
int main(int argc, char *argv[]) {
double X0 = 0.f; /* initial value of x0 */
double X_MAX = 10.F; /* upper limit of integration */
std::valarray<double> Y0 = {1.f, 0.f}; /* initial value Y = y(x = x_0) */
double step_size;
if (argc == 1) {
std::cout << "\nEnter the step size: ";
std::cin >> step_size;
} else {
// use commandline argument as independent variable step size
step_size = std::atof(argv[1]);
}
// get approximate solution
double total_time = semi_implicit_euler(step_size, X0, X_MAX, &Y0, true);
std::cout << "\tTime = " << total_time << " ms\n";
/* compute exact solution for comparion */
save_exact_solution(X0, X_MAX, step_size, Y0);
return 0;
}