2121import  collections 
2222import  gzip 
2323import  os 
24+ import  urllib 
2425
2526import  numpy 
26- from six.moves import urllib
27- from six.moves import xrange  # pylint: disable=redefined-builtin
28- 
29- from tensorflow.python.framework import dtypes
30- from tensorflow.python.framework import random_seed
27+ from  tensorflow .python .framework  import  dtypes , random_seed 
3128from  tensorflow .python .platform  import  gfile 
3229from  tensorflow .python .util .deprecation  import  deprecated 
3330
@@ -46,16 +43,16 @@ def _read32(bytestream):
4643def  _extract_images (f ):
4744    """Extract the images into a 4D uint8 numpy array [index, y, x, depth]. 
4845
49-   Args:
50-     f: A file object that can be passed into a gzip reader.
46+      Args: 
47+        f: A file object that can be passed into a gzip reader. 
5148
52-   Returns:
53-     data: A 4D uint8 numpy array [index, y, x, depth].
49+      Returns: 
50+        data: A 4D uint8 numpy array [index, y, x, depth]. 
5451
55-   Raises:
56-     ValueError: If the bytestream does not start with 2051.
52+      Raises: 
53+        ValueError: If the bytestream does not start with 2051. 
5754
58-   """
55+      """ 
5956    print ("Extracting" , f .name )
6057    with  gzip .GzipFile (fileobj = f ) as  bytestream :
6158        magic  =  _read32 (bytestream )
@@ -86,17 +83,17 @@ def _dense_to_one_hot(labels_dense, num_classes):
8683def  _extract_labels (f , one_hot = False , num_classes = 10 ):
8784    """Extract the labels into a 1D uint8 numpy array [index]. 
8885
89-   Args:
90-     f: A file object that can be passed into a gzip reader.
91-     one_hot: Does one hot encoding for the result.
92-     num_classes: Number of classes for the one hot encoding.
86+      Args: 
87+        f: A file object that can be passed into a gzip reader. 
88+        one_hot: Does one hot encoding for the result. 
89+        num_classes: Number of classes for the one hot encoding. 
9390
94-   Returns:
95-     labels: a 1D uint8 numpy array.
91+      Returns: 
92+        labels: a 1D uint8 numpy array. 
9693
97-   Raises:
98-     ValueError: If the bystream doesn't start with 2049.
99-   """
94+      Raises: 
95+        ValueError: If the bystream doesn't start with 2049. 
96+      """ 
10097    print ("Extracting" , f .name )
10198    with  gzip .GzipFile (fileobj = f ) as  bytestream :
10299        magic  =  _read32 (bytestream )
@@ -115,8 +112,8 @@ def _extract_labels(f, one_hot=False, num_classes=10):
115112class  _DataSet :
116113    """Container class for a _DataSet (deprecated). 
117114
118-   THIS CLASS IS DEPRECATED.
119-   """
115+      THIS CLASS IS DEPRECATED. 
116+      """ 
120117
121118    @deprecated ( 
122119        None , 
@@ -135,21 +132,21 @@ def __init__(
135132    ):
136133        """Construct a _DataSet. 
137134
138-     one_hot arg is used only if fake_data is true.  `dtype` can be either
139-     `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
140-     `[0, 1]`.  Seed arg provides for convenient deterministic testing.
141- 
142-     Args:
143-       images: The images
144-       labels: The labels
145-       fake_data: Ignore inages and labels, use fake data.
146-       one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
147-         False).
148-       dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
149-         range [0,255]. float32 output has range [0,1].
150-       reshape: Bool. If True returned images are returned flattened to vectors.
151-       seed: The random seed to use.
152-     """
135+          one_hot arg is used only if fake_data is true.  `dtype` can be either 
136+          `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into 
137+          `[0, 1]`.  Seed arg provides for convenient deterministic testing. 
138+ 
139+          Args: 
140+            images: The images 
141+            labels: The labels 
142+            fake_data: Ignore inages and labels, use fake data. 
143+            one_hot: Bool, return the labels as one hot vectors (if True) or ints (if 
144+              False). 
145+            dtype: Output image dtype. One of [uint8, float32]. `uint8` output has 
146+              range [0,255]. float32 output has range [0,1]. 
147+            reshape: Bool. If True returned images are returned flattened to vectors. 
148+            seed: The random seed to use. 
149+          """ 
153150        seed1 , seed2  =  random_seed .get_seed (seed )
154151        # If op level seed is not set, use whatever graph level seed is returned 
155152        numpy .random .seed (seed1  if  seed  is  None  else  seed2 )
@@ -206,8 +203,8 @@ def next_batch(self, batch_size, fake_data=False, shuffle=True):
206203            else :
207204                fake_label  =  0 
208205            return  (
209-                 [fake_image for _ in xrange (batch_size)],
210-                 [fake_label for _ in xrange (batch_size)],
206+                 [fake_image  for  _  in  range (batch_size )],
207+                 [fake_label  for  _  in  range (batch_size )],
211208            )
212209        start  =  self ._index_in_epoch 
213210        # Shuffle for the first epoch 
@@ -250,19 +247,19 @@ def next_batch(self, batch_size, fake_data=False, shuffle=True):
250247def  _maybe_download (filename , work_directory , source_url ):
251248    """Download the data from source url, unless it's already here. 
252249
253-   Args:
254-       filename: string, name of the file in the directory.
255-       work_directory: string, path to working directory.
256-       source_url: url to download from if file doesn't exist.
250+      Args: 
251+          filename: string, name of the file in the directory. 
252+          work_directory: string, path to working directory. 
253+          source_url: url to download from if file doesn't exist. 
257254
258-   Returns:
259-       Path to resulting file.
260-   """
255+      Returns: 
256+          Path to resulting file. 
257+      """ 
261258    if  not  gfile .Exists (work_directory ):
262259        gfile .MakeDirs (work_directory )
263260    filepath  =  os .path .join (work_directory , filename )
264261    if  not  gfile .Exists (filepath ):
265-         urllib.request.urlretrieve(source_url, filepath)
262+         urllib .request .urlretrieve (source_url , filepath )   # noqa: S310 
266263        with  gfile .GFile (filepath ) as  f :
267264            size  =  f .size ()
268265        print ("Successfully downloaded" , filename , size , "bytes." )
@@ -328,15 +325,16 @@ def fake():
328325
329326    if  not  0  <=  validation_size  <=  len (train_images ):
330327        raise  ValueError (
331-             f"Validation size should be between 0 and {len(train_images)}. Received: {validation_size}."
328+             f"Validation size should be between 0 and { len (train_images )}  . " 
329+             f"Received: { validation_size }  ." 
332330        )
333331
334332    validation_images  =  train_images [:validation_size ]
335333    validation_labels  =  train_labels [:validation_size ]
336334    train_images  =  train_images [validation_size :]
337335    train_labels  =  train_labels [validation_size :]
338336
339-     options = dict( dtype= dtype, reshape= reshape, seed= seed) 
337+     options  =  { " dtype" :  dtype , " reshape" :  reshape , " seed" :  seed } 
340338
341339    train  =  _DataSet (train_images , train_labels , ** options )
342340    validation  =  _DataSet (validation_images , validation_labels , ** options )
0 commit comments