|
| 1 | +# Eulerian Path is a path in graph that visits every edge exactly once. |
| 2 | +# Eulerian Circuit is an Eulerian Path which starts and ends on the same |
| 3 | +# vertex. |
| 4 | +# time complexity is O(V+E) |
| 5 | +# space complexity is O(VE) |
| 6 | + |
| 7 | + |
| 8 | +# using dfs for finding eulerian path traversal |
| 9 | +def dfs(u, graph, visited_edge, path=[]): |
| 10 | + path = path + [u] |
| 11 | + for v in graph[u]: |
| 12 | + if visited_edge[u][v] == False: |
| 13 | + visited_edge[u][v], visited_edge[v][u] = True, True |
| 14 | + path = dfs(v, graph, visited_edge, path) |
| 15 | + return path |
| 16 | + |
| 17 | + |
| 18 | +# for checking in graph has euler path or circuit |
| 19 | +def check_circuit_or_path(graph, max_node): |
| 20 | + odd_degree_nodes = 0 |
| 21 | + odd_node = -1 |
| 22 | + for i in range(max_node): |
| 23 | + if i not in graph.keys(): |
| 24 | + continue |
| 25 | + if len(graph[i]) % 2 == 1: |
| 26 | + odd_degree_nodes += 1 |
| 27 | + odd_node = i |
| 28 | + if odd_degree_nodes == 0: |
| 29 | + return 1, odd_node |
| 30 | + if odd_degree_nodes == 2: |
| 31 | + return 2, odd_node |
| 32 | + return 3, odd_node |
| 33 | + |
| 34 | + |
| 35 | +def check_euler(graph, max_node): |
| 36 | + visited_edge = [[False for _ in range(max_node + 1)] for _ in range(max_node + 1)] |
| 37 | + check, odd_node = check_circuit_or_path(graph, max_node) |
| 38 | + if check == 3: |
| 39 | + print("graph is not Eulerian") |
| 40 | + print("no path") |
| 41 | + return |
| 42 | + start_node = 1 |
| 43 | + if check == 2: |
| 44 | + start_node = odd_node |
| 45 | + print("graph has a Euler path") |
| 46 | + if check == 1: |
| 47 | + print("graph has a Euler cycle") |
| 48 | + path = dfs(start_node, graph, visited_edge) |
| 49 | + print(path) |
| 50 | + |
| 51 | + |
| 52 | +def main(): |
| 53 | + G1 = { |
| 54 | + 1: [2, 3, 4], |
| 55 | + 2: [1, 3], |
| 56 | + 3: [1, 2], |
| 57 | + 4: [1, 5], |
| 58 | + 5: [4] |
| 59 | + } |
| 60 | + G2 = { |
| 61 | + 1: [2, 3, 4, 5], |
| 62 | + 2: [1, 3], |
| 63 | + 3: [1, 2], |
| 64 | + 4: [1, 5], |
| 65 | + 5: [1, 4] |
| 66 | + } |
| 67 | + G3 = { |
| 68 | + 1: [2, 3, 4], |
| 69 | + 2: [1, 3, 4], |
| 70 | + 3: [1, 2], |
| 71 | + 4: [1, 2, 5], |
| 72 | + 5: [4] |
| 73 | + } |
| 74 | + G4 = { |
| 75 | + 1: [2, 3], |
| 76 | + 2: [1, 3], |
| 77 | + 3: [1, 2], |
| 78 | + } |
| 79 | + G5 = { |
| 80 | + 1: [], |
| 81 | + 2: [] |
| 82 | + # all degree is zero |
| 83 | + } |
| 84 | + max_node = 10 |
| 85 | + check_euler(G1, max_node) |
| 86 | + check_euler(G2, max_node) |
| 87 | + check_euler(G3, max_node) |
| 88 | + check_euler(G4, max_node) |
| 89 | + check_euler(G5, max_node) |
| 90 | + |
| 91 | + |
| 92 | +if __name__ == "__main__": |
| 93 | + main() |
0 commit comments