|
| 1 | +""" |
| 2 | +Project Euler Problem 187: https://projecteuler.net/problem=187 |
| 3 | +
|
| 4 | +A composite is a number containing at least two prime factors. |
| 5 | +For example, 15 = 3 x 5; 9 = 3 x 3; 12 = 2 x 2 x 3. |
| 6 | +
|
| 7 | +There are ten composites below thirty containing precisely two, |
| 8 | +not necessarily distinct, prime factors: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26. |
| 9 | +
|
| 10 | +How many composite integers, n < 10^8, have precisely two, |
| 11 | +not necessarily distinct, prime factors? |
| 12 | +""" |
| 13 | + |
| 14 | +from math import isqrt |
| 15 | + |
| 16 | + |
| 17 | +def calculate_prime_numbers(max_number: int) -> list[int]: |
| 18 | + """ |
| 19 | + Returns prime numbers below max_number |
| 20 | +
|
| 21 | + >>> calculate_prime_numbers(10) |
| 22 | + [2, 3, 5, 7] |
| 23 | + """ |
| 24 | + |
| 25 | + is_prime = [True] * max_number |
| 26 | + for i in range(2, isqrt(max_number - 1) + 1): |
| 27 | + if is_prime[i]: |
| 28 | + for j in range(i**2, max_number, i): |
| 29 | + is_prime[j] = False |
| 30 | + |
| 31 | + return [i for i in range(2, max_number) if is_prime[i]] |
| 32 | + |
| 33 | + |
| 34 | +def solution(max_number: int = 10**8) -> int: |
| 35 | + """ |
| 36 | + Returns the number of composite integers below max_number have precisely two, |
| 37 | + not necessarily distinct, prime factors |
| 38 | +
|
| 39 | + >>> solution(30) |
| 40 | + 10 |
| 41 | + """ |
| 42 | + |
| 43 | + prime_numbers = calculate_prime_numbers(max_number // 2) |
| 44 | + |
| 45 | + semiprimes_count = 0 |
| 46 | + left = 0 |
| 47 | + right = len(prime_numbers) - 1 |
| 48 | + while left <= right: |
| 49 | + while prime_numbers[left] * prime_numbers[right] >= max_number: |
| 50 | + right -= 1 |
| 51 | + semiprimes_count += right - left + 1 |
| 52 | + left += 1 |
| 53 | + |
| 54 | + return semiprimes_count |
| 55 | + |
| 56 | + |
| 57 | +if __name__ == "__main__": |
| 58 | + print(f"{solution() = }") |
0 commit comments