-
-
Notifications
You must be signed in to change notification settings - Fork 400
/
Copy pathgaussian_elimination.ts
52 lines (45 loc) · 1.57 KB
/
gaussian_elimination.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
* Solves a system of linear equations using Gaussian Elimination with partial pivoting.
*
* @param {number[][]} matrix - The augmented matrix representing the system of equations.
* @returns {number[]} An array representing the solutions to the equations.
*/
export function gaussianElimination(matrix: number[][]): number[] {
const result: number[] = new Array(matrix.length)
function partialPivot(): void {
for (let row = 0; row < matrix.length; row++) {
let pivotRow = row
for (let column = row + 1; column < matrix.length; column++) {
if (Math.abs(matrix[column][row]) > Math.abs(matrix[pivotRow][row])) {
pivotRow = column
}
}
if (pivotRow !== row) {
for (let column = row; column <= matrix.length; column++) {
;[matrix[row][column], matrix[pivotRow][column]] = [
matrix[pivotRow][column],
matrix[row][column]
]
}
}
for (let column = row + 1; column < matrix.length; column++) {
const factor = matrix[column][row] / matrix[row][row]
for (let k = row; k <= matrix.length; k++) {
matrix[column][k] -= factor * matrix[row][k]
}
}
}
}
function backSubstitute(): void {
for (let row = matrix.length - 1; row >= 0; row--) {
let sum = 0
for (let column = row + 1; column < matrix.length; column++) {
sum += matrix[row][column] * result[column]
}
result[row] = (matrix[row][matrix.length] - sum) / matrix[row][row]
}
}
partialPivot()
backSubstitute()
return result
}