-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathkShape_multivariate.m
85 lines (70 loc) · 1.6 KB
/
kShape_multivariate.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function [mem cent] = kShape_multivariate(A, K)
m=size(A, 1);
mem = ceil(K*rand(m, 1));
cent = zeros(K, size(A, 2), size(A, 3));
for iter = 1:100
prev_mem = mem;
for k = 1:K
u_cent = kshape_centroid(mem, A, k, cent(k,:,:));
for p = 1:size(A, 3)
cent(k,:,p) = u_cent;
end
end
for i = 1:m
for k = 1:K
dist = 1-max(NCCc_multivariate(A(i,:,:), cent(k,:,:)));
D(i,k) = dist;
end
end
[val mem] = min(D,[],2);
if norm(prev_mem-mem) == 0
break;
end
end
end
function centroid = kshape_centroid(mem, A, k, cur_center)
a = [];
for i=1:length(mem)
if mem(i) == k
if sum(cur_center) == 0
opt_a = A(i,:, :);
else
[opt_a] = SBD_multivariate(cur_center, A(i,:,:));
end
a = [a; opt_a];
end
end
if size(a,1) == 0;
centroid = zeros(1, size(A,2));
return;
end;
[m, ncolumns, channel]=size(a);
[Y mean2 std2] = zscore(a,[],2);
S = Y(:, :, 1)' * Y(:, :, 1);
P = (eye(ncolumns) - 1 / ncolumns * ones(ncolumns));
M = P*S*P;
[V D] = eigs(M,1);
centroid = V(:,1);
fd1 = [];
fd2 = [];
for p=1:size(a,1)
ts1 = 0;
ts2 = 0;
for q=1:size(a,3)
s1 = norm(a(p,:,q) - centroid', 'fro') * norm(a(p,:,q) - centroid', 'fro');
s2 = norm(a(p,:,q) + centroid', 'fro') * norm(a(p,:,q) + centroid', 'fro');
ts1 = ts1 + s1;
ts2 = ts2 + s2;
end
fd1 = [fd1; sqrt(ts1)];
fd2 = [fd2; sqrt(ts2)];
end
finddistance1 = sum(fd1);
finddistance2 = sum(fd2);
if (finddistance1<finddistance2)
centroid = centroid;
else
centroid = -centroid;
end
centroid = zscore(centroid);
end