-
Notifications
You must be signed in to change notification settings - Fork 8
/
plots.nb
863 lines (832 loc) · 40.3 KB
/
plots.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.1' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 41059, 855]
NotebookOptionsPosition[ 38739, 812]
NotebookOutlinePosition[ 39134, 828]
CellTagsIndexPosition[ 39091, 825]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.807051426871296*^9,
3.807051511529394*^9}},ExpressionUUID->"100d8795-7eb0-4c48-8def-\
361d44d86222"],
Cell[BoxData[
GraphicsBox[GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVlfk7lAsDhm1Jqplo0UwcZSulSQvazPNaSrYWW5FEJKljqQ6lE42MUkQd
UUyWLCW7LNkZgwhlO6iMkiOJJDT29+v74b6ef+B+rnvdKXez0yJCQkKPf/P/
NTo90Fzx9TRz3EywZVSEv1dMj+7RQ9NHkE6WWyfxiLk99iHnBc0C1epPD7sS
hcw+WSWWt4odvPJzDx10aWAaN3bkPKY5QSt7Vmc70cVUCpZLIuXPYvmZA57y
RZ+Zs0aOkQ4qbhC2fi2m7DLEHAxo4zlEeGJHZNXmlZZjzKNOgtL7tEtIGist
kiGmmDw9ekEVxwttlRaq9AmSqa6onTUufwV8Id5eSpEoOCL2KcoJV5HVlWoZ
yl8IiV7/J1YqvnD45nBymcsSFH1saayyuA4BfSztQOoyeBx2MrKNYCHDlqOw
yHI5urfc1AuhBcBVQ0mwiKAhPHZ1hfJxNjwaRKyMWLIwoj7fW8YJxGe/A+mS
E/LI/96gMSIfhMUxAU8WFCnivJ1dzk2H23BV4HKTypWh0DTCWJtwByIa23vY
/PW4my694YjKXXSIZS0Rd1HDPrnExK9nQiHDLZZLbmHAtyZqWaVFGGoDr63U
S1XHDk21EOuIewhbLyknarkdcSsPBd6mhcO97NhKUWIXrjZG8qyKwjHUnkYx
f7cbVuyPIorHH4CdSxfXY+3FkglPv2JOBCRr9UZEJoDLbeGXh+QfITvutKVw
kR7Mg7vzX1Y8Av+Vl1FKoT4Y+ioTAQ5RiGoLZ8aX70PfiwJPuYRoFEUIFFl8
Axz5553rQZUYJFYf/SzkYgI1Y8UUem0MdCTfvt0QZQoJ0fNf+s/E4s9tlqVx
LQdxsnA+u9wiDvmrqgyJ1MNYqRrGOBYRD4kzOnQhS3OwJF6sD6IlYtr2YiIJ
a2w0uHcrxyMRM/tT13bK2qCF7f71fW0iDqzO1XGes4GSqFoqwysJzR47LyTU
2aJmLpHR1pKMyll2zWEDeywZi9CQD05BxY4RC6vTTsjb+lfEgc8p2OJ0v9B9
1Al2HuYCz93PsW9hzA9Hv9PIHKYW8gaew+nZ9/YPcc4wG7i113VfGryt/rq2
bNoFD7t99PLmM/DFYTXht8ANOrLWiXzLTFS/1n29L9MNgzZaCyTSM2GY0r7h
i407/hi64pi+OQsJJ6M2dx/3gPtZTWWhD1m4ten8weYqT0g7ZT5L2pmDqah3
htoVl3DMOj7zx2guPDp71yudu4qR9xaST+h5OO6smrXy36sItJM4ba6Xh6FX
Vhr/6vyNF47u9PzwPMwudtbkrbkGips2+6pWPj4FWS236PJFtX+Xjfi1Atjm
gBOvzcK2NClxWYkiGBhPRm7ZzEYdo9q+Ub0IER9ubXzozoZ99uViX+siaHUG
73HJYSMkv8fj0/MieFJGOpm7AjFQkf4+2bQYtV6ywjXGNxHTbpi99Z8SCDTX
LNwb8Nt7kmVr8Ec5PP569rVG9y4enj1qp7a/HHdiFbtCw+5CqU3NXsqtHEG+
7Tol/LtgpnQ4vi8th9bxbl/8HYrClIi8AkYFkmrLWgUnwjBsPlRi3FQB1VE/
65nke7B8Fvn64lIuxmiBXYfswsE54W/ivI4L07mMvnN3wtEr/WfjMQ0uZPZc
TCt8+fsX13TfaJ/gQqym0XNw+QMEmQ23LEznYhftdWtcwwOUzuq+izapwsq8
/nF7g0goH/k+UHWHh7vc+FTGqSjQ/Qx2n4nnoSG6Uof/KArL0uPuSBbw4Bpr
ZveqOQrTEuaMI708lCq/2miiG423FQUX+Tur0ckQlpJW4cBHnTU/+V81Krel
SkdOPkYTdcUKBlGLsuvuE9y+OHg37cLD8ToYdp/yvro0CRRG3n91EvX4h7bd
z4iRhMQQ9eAZ2XpwOaWi2w/99txkfZfdvnp0eAvfOHwvCZter7ioHFGP9uv6
NqWrktFTO5Kco/UadH7BOTuVpzCoTKI0+jTgbbU5vexYCmRypfjCwm/w3dA+
eWxRBvJ79Rre7G1BvU9sWlFdLriuj9dYD7WBduHZYn/bYkyoaFPT/+yAc9LN
tLXrKyEylbpsjfI7+PbzhL1tq6FJ2uebZ3zA4zVOjFe5dWgI2NFUs7EHihs0
7ejHmyAf9m0q5ftHUMjMmT3fmvFN0MNvV+9Fg+C9nldGGxIHi+spdz+Dw6K7
HO7vAEXu6UhfXx/8YqM/ihu+R/DZPOc4pX7Yrgn6uSSJj19Eap+L3xd4SCVJ
K+h8wqVtvNxVVQOw9xs9Z6D6GT0ZvDvN6wYxsjSNWH30P8y4tkWr+nyDL9cj
fDLyCzbpLJx3Lh6CksK9Qu2GrzB4su5Mtsx3vGnareZrMgRvuZMKn2xH4Nth
Witc+h1qQ5aLO0x/QHxHVe2Gxz+wnPpDgjf9A7P7rQ17xX5CrDw6U5EzippB
m5ByhzGc21Hctcj4J/xZ+qs0B8eRangqruzXT1xfc11G0ucXJr7Rl/VHjEF/
sit4dEaAPHMD0XD9cew4/1QQmTYFvwPs2Nz+cYRezpDnms5gXbdRZwJ7Ape2
M802js1it1ZAOG3bL7wsuLTTsX4etn+8mRJu/QUb/Tu0+wZCxER9SK8HSwBa
gm23nL4w8VDM7pKZ0iS8D38ZSNQUIZbz856I8CYRutMmPHejKLHgGstil+cU
at9bbvXZLUYIpdhl9kpPY3JY37+YuYC4EJUZIs2dhiiFuV5wUpwo3XRLQspt
BtQbQeZaNxYSUkYX1Pwps5hzq3BwfSRBfNj8tvVKySzShseNNzUtIrJioNRn
NweZ+lN9qyYkiROZmlJy83PQqCvjeMkuIa6z41kfns9jPLmnfNhxKZE+IBdN
MSFx+9yolBSHQtx6zLbnHyQx9UpB+148hXAyG1bOOEIiL+RNv9RTCiFbUpJl
epSEtGl03oocCnE79HhN8Knf5UiYIda+ohAumo9GJa+Q0MjooRwapxAKASsO
LEwmIaGtcXOxKZWY3/n30o5nJOZutLKizahE1/DnluRUEtrbhqc3HaMSYUdf
nNifTSKBd9/loCOVIDeaXWSXkBCpTN766AqV+NAcGiPaSkJ89U+f/clU4mWg
wLG1nURZ6/4T/FQqEb7npGpCJ4mqX6vKvLKphHESI1eXTyLjgurMsxIqUXS5
sY71lcRqXRnH5a1UImKzRuiRIRJbdxrsyuykEp69HIt1IyQePPgZYsynEhtM
zvdUjJPQDSzOYX+lEmLCbYlhAhLBtC5/xREq8TFvj6v9NAnFFReaK8epRIlr
whb1ORILvAJj7KepRKT84gmSJLENqwZJkkr8D3lPrGg=
"]]},
Annotation[#, "Charting`Private`Tag$4344#1"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLines ->
{None, None}, DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{False, False}, {False, False}},
FrameLabel -> {{None, None}, {None, None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 2}, {0., 3.9999998367346956`}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}]]], "Output",
CellChangeTimes->{{3.807051479297735*^9, 3.807051498200965*^9}},
CellLabel->"Out[2]=",ExpressionUUID->"90c7e7b3-0479-485c-b223-9430c5626de1"]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
"Sets", " ", "the", " ", "working", " ", "directory", " ", "to", " ",
"the", " ", "location", " ", "of", " ", "the", " ", "notebook"}], " ",
"*)"}], "\[IndentingNewLine]",
RowBox[{"SetOptions", "[",
RowBox[{"$FrontEndSession", ",",
RowBox[{"CellProlog", "\[RuleDelayed]",
RowBox[{"Replace", "[",
RowBox[{
RowBox[{"Quiet", "[",
RowBox[{"NotebookDirectory", "[", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"s_String", "?", "DirectoryQ"}], "\[RuleDelayed]",
RowBox[{"SetDirectory", "[", "s", "]"}]}], ",",
RowBox[{"_", "\[RuleDelayed]", "$UserDocumentsDirectory"}]}],
"}"}]}], "]"}]}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.8065940396215553`*^9, 3.806594060464962*^9}, {
3.806594587981001*^9, 3.80659460069242*^9}, {3.8065946687774763`*^9,
3.806594677405686*^9}, {3.806594749642371*^9, 3.806594780535796*^9}, {
3.806594818370144*^9, 3.8065948791186523`*^9}, {3.806595025132916*^9,
3.806595054157217*^9}, {3.806595888752407*^9, 3.806595900305118*^9}},
CellLabel->"In[5]:=",ExpressionUUID->"5be14f3f-2cbf-4800-8ad7-c90ed536596a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{
RowBox[{"plot", " ", "of", " ", "f",
RowBox[{"(", "x", ")"}]}], " ", "=", " ",
RowBox[{"x", "^", "3"}]}], " ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ch2xcubed", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"x", "^", "3"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ",
RowBox[{"-", "2"}], ",", " ", "2"}], "}"}], ",", " ",
RowBox[{"PlotTheme", " ", "\[Rule]", "\"\<Monochrome\>\""}]}], "]"}]}],
"\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{"\"\<plots/ch2_xcubed.png\>\"", ",", " ", "ch2xcubed"}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.806595311232398*^9, 3.806595361353753*^9}},
CellLabel->"In[27]:=",ExpressionUUID->"c6a0636a-65fe-4f80-a309-0e3f5ba361a0"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwteXc0FY7/vgihJBGyV2aSNDTu60ZJiVBJlGy9RUki2SOhSMiI7JGyo2t1
X2b23rJXMq6ZUNzf53fO96/nn+ev55xnnPMImzzSMaeloaEh76Ch+f8oBwdm
qFQqkr4pk6lUwbJHG6J+G5tUrHMxWqMsCpblfDl6aOU3FdPk8dfYqGCZgqSG
ydQsFYnyqtTeSsGyk/t8+ht7qHg9Ib1166VgGXF8qT4qm4oLgwQLqX2CZTov
mz4fu0dFh9uWknQSAmWOLT42luRtHObrsogw4ivr7GSZKTfeQrltUYar1dxl
/GWPOE7y/cOo6aGpvbmcZQUPquj3Dm7iFzILeFDYy4xeH13s89rAc50XpWpO
sJWthzj7Iazjq72uI6Z9LGVJrEM8kaNraMzOcfObOWNZzJWjdh3+v1HSZIvQ
501X5mVt/Ezq8ipy1lx/sqBBU+ZM98nRbn4ZzwgfaWhx2URjjxax7o9LKFGW
FnzR+ze++zYZGWO1iGdDW6zOqC1h8bDk7gwRCq5pyj3tKppBl7M7Mt9zU/Cl
twMPZ9wMnovq0/BnpWCJXNIHC58ZLNMJeGOxOY93F8iH4doM1lTPsgu3z6Pt
xdDq6slf2Pk5iyfccx4JyWqRogd+IcVRUcJjZA6NJHMpf7x/oigbUflG7Cw+
k2p7kR8ygUHyo8+tQmdxptl+RP/5BK5reX3x8JvFS0MPnThMJrDxbZVYpt0s
pjYsXCo/OoH2+y8zMlyaRcWen5407eP4/YBOI2lhBlVNa5H1wDha8Zvp8p6f
weyBXRzHM0YxT9rPamx8GkU9f6pt8Q+hYJtRkUzfNLo4s+yS/jOIrx2Vdj1t
nkYaug/HnrUOonnVTApj0TRemDENf+Y9iNyGGqOyQdMo+Ii6xjg7gK5v2fUc
T02jwr97fjfKfqDaeszF3YE/8fHTOyxE7z4crs4VOnFiCuNt54OULLvQ5frG
hVOyU6grbnrV7EoXco8S/zstMoXphQGbHw93oda/llwC6xT+DDm86b7aiWUK
FOVLU5M4XmIPpt6dGB8nba4XPol9bLFpqykdaOKUlP58bQJzNBl4l7bacJth
tsllbgJ36jaoqUy04fswhWW3sQns2FBYyqxvw/bs8tPezRMYJSfp3RjRhipT
ww2vUidwbvmO2eFjbSh2nY8SozuBcVwvRp88bMVJ2XcK+HUcL+ctT3nPN6G0
Wwpl+vM4BqsXc18obcKHLQWf2BPGcSa779HpV024/rhbxOLVOC4caTlQJ9WE
zCSu/XuMxtHA0mjng/8aUf78+xV9pv/xXzhcSFuuR+ebcflrBmOowK72Sl62
FstSs22FtMewoHgtxnlHLe5cR9krqmMYNuTIs9Fdg0HvR5I/yI/hC0r8jwCv
GowfFn53gX4MNfxvn2cY+I7f/0t+GpI1iuku+Ew5shr3uaWfkNsxit0zivVU
xUr0/SpZy/ZnBAtZRIub2Ctxk5J2e2VuBF8SfPWqFitw7F6qS2HvCPr4pYJM
ZgXmnU+qUM4ZQd8nUmyDEhWoQ/9B89a9EQxpZ/UsEStHCR7hJhrnYcw7yZ73
xJGMbAGCi9UWw7hCv1th8CwZ1zf597/SGcZbI++339KSsXbg4G1O6WF8d8Cm
ZCDoG96P55iU6htCGY6op0ufSvGTxK4tnZND6JJZ4jS/WIyyJxZkU1YGMO1Q
kNxAHgkt5NzdiwYHkD/a94m8KwnjDu1tb6oZwHDV69tdl0jIznXEcS16ABUN
Ayj7h77inz8Pyy9dGEBN7VtON1i/YkUR5eZM2A9s0Pp0Ms81H/XOUdyOnOjH
w3Ti2vLhuRhy3K1NRagfOUiZpcetcrHhMKuYHnM/drjtJ/kQcpEgIFfnMdSH
DuYRxts/c1CUarO/3bcPfbTuN90m5CClbD7NvqcXZa/1bf9ezETvC/OtRc96
MPHacKDN+XSsUJu7pmjag5eOWpsp/vuINBqzzVkaPWig6iX7nPQRXW7+akwS
6UH3+4xkjyMf0cFisjawsRv38SUJ2oin4X2/wTJjoW40KnmdekcyBVNfD8AA
czduNg52/JhJxongH2Td310Y4JeZ0p6ZjMZRfaXq9V0oZeBrKn48GfU/dRUe
t+/C0q0rnjqXk/BqY1MOU20n3vjymtX8ZQIGtDYe8cnrROqdjXIJ7QSs7WzI
2o7pRCGJ/kZ93gS8OFiXsfK4Ey2eF3Cy5cYjgVL9cZC3E7P0dujfrIxDeTZy
fO6jDvz5+LPDk6wY5LyRFXybqx2No0sv8ApHYN6hV8UX6doxjT2T9lFnOGpt
WE4cXWjDXfWzFGu/cAyIFT7FXNOGN76GGpgtv8Pt6bDhYoc29MxT/y7bHIZT
rs5yfN2taJGk8dM1OQS9tfT0dlW0Yo36+zhekxAUEj3utZrZigFSip9vCYWg
fi2lq/FFK75SflOdFvsWm9lNXF2Pt+J3roRLoYnB+PDa28hvUi2YaHeZdTww
ED+uXpl7t6MFL7Y47T/JF4hjUTuJD/uaUc1TmSnn82vUnXD8KeDfjFxGfH3M
za8QnAxPeEw34X+mD1+dFgpAtiSZTuW0Rrx486HqiQ1fvKI2KcHr3ojOlhwe
ElG+6DMf67yi24gZRVqr4qd9cf0ku2gyQyOmRbLEXXB/gaON64/pLRrwXTSD
+zCnD+atVe+tFavHEv9Ve3jiiUGfEisIG3UYFvKrKpHPEx8Yuj8taKrDf3qU
gEM1Hij2/dSPRIc6FNLknX0p6IHh7z6nutbWous1o2Obxa74XPHtuWPWNcjK
ZnSag8cJdadtFtOJNVi0w1VbLOgZHou5kiTEWYMyc/oTp+if4RzdTiZW8nck
MysbG204oGGHQ+f03u8Yx8y9QtiwR2W7Ow9iv1T9TzeS9tz1xyhwSEmA068K
dyUI9rv9tMW/fZxtr+5UYV/lL5s+F1vMP99ywom+Cg0jeU9m336Eh/Yp0964
VYnKjMNhfCrWSFstUFAvU4mV2wHtlBcPcPjZX8vzNJXYZvThK0ejFUaO5DfJ
pVegnuh3pXMm/yFzjkQU099y3NE/kHi4wAKnTHde9Wgpx4S7jwPq9llgJdfo
9lpSOTrV7fno8tgcXdzfm01cLcco7iMazKfNkKK5Rx5jy9CtsbZggWKMKT8m
A3/5kFE7dKd1YIUB9rsciPtwjIzebj1qdD/1kVXgUo722DdMe1lNYmbTRwej
j+1F8A3LJP4c/PBID1UnrbgCNktwH0tznKPpTXzuGy1JSC/Bz9oRX4U/38As
iUal5VslKCvgs7W5dh25rA7f0S8oxj6XxhmmaB2cpizES9sW4afS43PE/VrI
FyyUNyRQhC/OPtbnXtNEraPalSFNhWj5o/mZWpMGFj7Jm9yULvxffr6X3B+i
jv7r9tINk1/R5PLn1AS7S0iOSjnjHvYVSeWf7t5wUcXl091Xj6l8xQ+T7PM/
Xl9EfdeTj6LjC5A3UvwYY4UKStNufnlgkI/P3d9k8T8nomGSdLUgcz6K6wms
vX4EGHLBoLuj8Ate/shWuL12Djd9S9fPHPiCmltDy65SZ1BOcp5psSoPRawq
maQ6ldCkjp83+UkeNn34/OJIwClsYHE/t7stF0OlIqf9uU4gTWa2Zpl7Lib8
SrZxpiiioubIPXu5XLQgfg+laz2GMcHnvQZe5SCL1y0qe95R7JXeFXQ7MAs3
mG4sRvXJINHmv5zymUy8fiPxhtghafyYXd8upZaJRSx3Z2t9JNFJMZBrkzYD
7YyVJHscxHHMgaJkYvQZ01seMLswieGVomt36r99wvwrshG5GSJ4kMCe8P5Z
Ou5jdJK8KCqEXh5PKmm7P+Jbedn20ll+nK3onLQ69hGJGdWRW1m8WHopQvoM
JRVHKbenwl9zoVjA+tUk9VSMvekwaZ7Cia8bbz9iSU9B6ZvHD8r37ce72nz5
P0yT8aLhEEdSEBvOrfxWelqVhMqmXxSEZVnRJbwFWcWT8O4Ou8U/91lwt1L6
xY8vElFQ2TT8VvsujPnh1XB+KgHbWpduNVkwoKzbHe0fqglYqOd3f0psJ5YI
neixT4tH3hdv/x5hocX8hvbqa22xuLB4dZ793T9yJ5tvm1fIB6SV3fvK8vwG
eeWm0mDB9Ri8zLy7zldhjcwePTc9zRGNN8a4WV+Zr5AVRuJWebujsICZpTyo
Z5GsLX6d5lpEJE5/efRWj2WebGvFsNtLLwKvaPzi+tc3TQ7OLuIq4AnHzKDD
42c5J8nZq9ai0/1hKCn+s+waaZTcrCR0hDcmFEucPbfa7QfJFLeO05p3Q7CL
pb7T9WgveU+Vr6qnwFvsvLGVyBTVQdZjt0++j29w2niUoQxayBEx/SXN5wNx
cnVZpMu+ltx96HyHYlXA/3q/v1W8uILMkZs2817VD3HDK4h5qYR8/Qwr7Y66
FxhWkOYUeDSfHFJtz2Op7o0s7xbif7NmkFuv/ZBvavLAv8pvaZb9EskC+d7B
FvEumB1I7iuaDidH12qhQoojltTto93T7k/mHuSnbKfbYVnpndwgcyeyzHiX
UvjdBxjptf5Sj86MfGi3bYScpTFuuVYHNIZfIHt0SnbyVmqgqJm6GYnMRJbd
O2hFf1gR8h/2zNoxl53rXvKKY1vXg6luQ+7nlnKExWsSy4/sLCD25MXdh7l0
Cc6hqvUPFG2hc2mpRS3OlrDt5hQdd+Qp/JJibEsN8SJ4WGVYd0g/B/UNuqI7
7m8JdLrD5xgPuUMbvaTtDe8PhEoh/5cf2LzgIYuGtRZjGsEnXMT2ZJAPyImc
3/tpLYegurtUr43lJazY7DytOE0iMHrdPP/A3x92ewSKaamUEWr/UKToGV9D
Dynip6hHNSHAxo89zicI5qQcjlSUNxBSl4Jd+TyDYZoNxz6/aSP4Zgw+/oVv
weepV9Gu3i6CpaW0xdftEIiYzqYJqu4nqIk46nufC4MlRifWX0dHCJKDlZpa
Lu8gtNap6Pi9cQJTJJsKf0k4cPtnH3u2OEWY0bl7cmYjAkxiHmU7z84Q6vd8
kiGdigLNm3vvseguED7Xrgn6OL4HMzq70xsHlwmvvVU4tL9GQ49nwj632lWC
NSF4l8DvGLBtITY7ff1D0NgY+DdzLBaS3j1nav+5SZDLl1oi2cXBsKvTHet7
2wS/kyV2FXrx0MytKM/FtgPWw0bnJNfjQTDzVI/bATq4v8xo+SYiAeJahxfu
XaCH3mtyo79PJAJDL1n1cDQjFDE7d1U8TQK7SafRW3W7If4wZ0e2SDJYw9/m
vPG94KuV3RrTkgx/QrUWw9/vA5snl5v9XVJgZsr5fNu9/XAjfLzBQSoVfmdf
3PdUmRPOFLnWmXanggfDKucjFS4QGeCq0fJOg7UdTfQZpjywKHy1QnrwIyhf
5PJIoBeAngtTyBWQDqt3A0qiLggB2dLj286Tn+DNe+mowQhheJWZXzgU/BnM
vxtYZtuLgV2r5teGcxmwp0mBVZoqDnor018KZzKg3ptEtxEjAYeU+LNDLmSB
ibzuJRsOGdh9h5ThvpQFCee+qlMpsrDipv3JOjYbGqS0WHBIDozGKnREXXKg
e8owrNX9KHSuvGmLas+B+80PBHojFeAS/V0tNqlc6Co1OGv67RjISf7R2OrK
hbxq6ZlFqROQqFTV+EQ2D3pnZbv+szsJnOpv1We88gDk9Ziv15yCfzYyl3uO
fAFNGVsm04gzUPfl3oVc/3w4eElNxmmWCGerZSslRvLhmLjppS9V5yGne+N8
7IkC6EvvJbCnKEP4Rii8Gi8Ap7y1gwXOF8AMak+bnyPB7v2r9A3eatCr9a7o
RygJnjr2Pb8fdRnUTUxO6cyQoDXqnicX6QoovPh3HCIKgUfscawQiwZQ6+WP
8iwVwWOtaw2Bu7XBbmAr+82lYrBJApbzRdowNV8vxxBbDLzGoo+eWOlAI5u5
7MqVEriVqNsa3H8d3utGSTQll4L5pMXJqyu6wHrfIlXlbym0nZjvCq++BZ5O
x8SLtb9B7Lb/SneMHtyPaRJJ2/4GZxwj++z09eH42A4BTz0E5wK6YNJ+Q5Ar
vrUkn47gR5vTorNtCIdCMqtGNhAq/DTaUubvAUtCxvF4jTKgdWaJ0p43gn9a
egNUShlcFaMypv4xgfWzdN9vcZXDanoarbOHKaxKZmVnQzk4eNKt/WAxgzma
nd73gsshxSOv/ba0OQzmZEvh0QoQO/3367yvJfTH6O/n0q+AHXXq9fVi96Hb
j37roVcF/DZkpphW34dmI4NWgY4KaN/MshtjtQIyG6Ojm30lFFonVRZWWkOc
rWHVOVIVEHx1ghjuPoaYO0xZ74arYPWmqQah8jFEquVHzDNWg+OQuexOGTsI
FmJ+8EGvGs7UyGmpUu3Ao7Vg39ZGNSzl6+qtF9uDsfyee6VnayB7RpGU7/kM
DPkK1TjMa6A+/LbESVon0N9lqmAdWAPLOdItjj5OoDNSSM83VAPfB8oaIOg5
KAebZTi710Jui0oigeQCooslG6cr6oCbwcavMccDXJpUfFbn64Ahv5TpDoMn
dH9qYM3iqYdlwYt0rHc9IcD8h6jw43rY7LvAMLrHCxb7NzUYhRrA2XZk6Jmr
N5CrlRI7XBthePX1Y75wX+BOKpcNTG+ERiV7tqJtX7DzuExS7WqEjMHUqvD7
L0H8zO3GItkm8JpR4OAn+sHrnGdrcT+aQC3v+1jAtj/oR5OuWCu1AKlmtDOi
OBDyn0GXuHkLCH8JMJE5FQSsujX3hoNb4Fns20QBUhCUs/XY60y3gAj/9ohM
0RvgUHG+FqPeClzSPE9ZfgaDc+F7J6/NVtA/4ztmIxAKl5P6mjT12mHjn+6n
Cv5IWHyRZVFt0w45h2WtG+wiIfK+N/WMdzu0z1RLRNdGwvThw0elstphLv2M
TKhDFPgVeoTR7eyA35EjJds/3kNtk4RBYXYH7DsUWhfU9AFsc/6tyFV3gEG7
Qe2TI7HAHdr2OqW/A6L8S87KhcTCfT1ncgh9J7wrVBSX0I+DXePNwjYGnbDz
zPAh4efxcGn96bQwYxeoHr5tvCqZCJT+K56RfF0Qe7xhsNYoEcK/CR7cq9AF
xbTLOnujEmHKq079350uYDzTu7bCnAS+e/izu/O6IEfnXpvkahJ8F6l6+sqw
G8TCeBRTB1LgogY73e+CHghlvfL9INMnCDJmWtqo64Ehn7DqC+qfoPcpzfD2
YA/YJiS4DQV+AqtYSvEuhl44bcATbsLxGYIW6u34dHthLI8ziXQoA3rfeo+p
rPXCta11p59GWWDVvVoecqIfzKTfCq2H58KXmdnsiCv9MCUR1WaKufBve+xD
jGE/SOf0wp7pXAiSaHNK9e2HWQkmtoOn8+DLs8yjxd39QCPunCQ0mgf/Dlok
jDr8gM7+7ULmM/nw5l6PhzxpALSNjHOjBUngO3cWphoHwEFTPOX4DRK4OSVu
RY8NgJvbBRFBfxI8DLV5zsg6CB9qLD6OrpBAs4bOfshsEH793rCTaSoE1iPy
lq/ZhyDZU8eR4U0xBG37aUzbDIPH1YA5V20y+L6isMR6D4PTB/fjrsFkcOO+
UX89ahii1I19O1rI8FBB8BJWDUPuWMkR32sIEl/0hRr2jAD78+9cL6TKgPHn
Ik+i2Qg4Hm3IMDpeDjWa/Hu02EfB/ZgXndqjSuCQGz1gxzcKxcs3F/+8rQSj
PSlCYYdG4YBVOnNbfiVsNsgq9p4ehbGY21LUzUqQvXzWwMh0FAQ7U4o0/Ksg
WMUg3TZ/FIbDRF3qMqtB/1TUxbe6YwClZqenDtRCKtfda1+MxqBsjOPALKEW
VtaEbndZjYF77DsZPstaeF3w0ZrHfQzUlkLM6QprARUKQxPSxiCwWqVs2qAO
xA73jOauj4GlYr6FWEY9zAtzurW/HwcRPw8p5kdNcMo54XF58jhUHlRyGor+
n687D5vnZI1D1vWEEyO1TXDgperVoIpx+PWfma61aDMQ5hwPXpkZhz20Cxnp
/c3w5mv/13KlCZC+vWw5JdkKR9XjF3J6J0BUc2LwU24bPLWXMX5zYAoWbUOv
nd3dBQeYF0p1hacgpGkmgFemCwrj8rgFZKf+twM+/OS+0gX/6pVaM85PQTvU
w0O/LvASVoN66ykIoxdneMHQDUHNZvz0lVNgdVSs4tGuHkiVjO17/ugncMve
zo0X7YOeATYdi9ppEC4ROJdaPAhXXpn32rdPg/YoD/3U0CCUKhUbeg9MQ4XR
k1MqdEMQH276IH5xGoq7KGy6V4fgvtZXn37uX1DrXt09NDwEm5UGJM3/foG/
/+JbFYYR4PucyneSeQZi3qXwqBBGwcjp7E/Gq7PAbH63bW5gHKTNarsourPA
OlE+UbE6DiuaN6q6jGfhSOEN2ozdE+ArZp2Q5DgLv7ZMn5POTkBGS7QBJM3C
hjYq5H+YgA3xvy0Om7PwMI/3P3XTSQhpLyqc/DgHO3fSsB/amoJKmZMBlfQU
CDfj8zxuMwOGR24kLe2lQEfxZVchvxlYV3hcKniQAnqmn4v5k2ZA9vRnirMc
BdY/Ve+71jcDYWqC1xVvUSCQ3XooUHUWLMwZ+VI+UmBSQV7fU2wOdsX1ZPqq
L8D+k5zCDyjzcIipdDpZbREOikjsbh9cBP7SBxfp/ZbgYq+SwIndv4Fmkzbd
bmwZCFc7Bb9pbsIf7W+G1eKrYOFscvfOMhV+KN7jFff5DWXJSjLW9nRE21ts
+0QG1oCtsDOa5iYjkSdsQm8n/zpU7z+mYm7CQswyiE9bebYBkWEixhRRNuKt
c+5qtd82QWuF9lxmBjsx19BG5PS/v/DUejVX15KTuM6sQld0cwv0mFWuT6dy
E3Xazpzgj9yGIwEMQhx/eInMZ1jKSz9sg39IhJMXAx+xPLlf/U7SNhx013Rf
4+Qjyj9zMo7O2gbNYb3QBUU+Iqsg6TVP9TZ45rP8FX/CR6yzVhjnXN6GKIfL
ecmLfETiLqlg1qtU4HQTZVla4CeuP14/mKVNBbUOBcoBGgFi9o+aFI1bVEga
JscqswkQBbItSl6bUOHMuqP1Z3kB4r+byVPMTlSwFX7fU/FYgEhKEjzHmEoF
D+7tLqbfAsSHexZqUj9TQd9xaE8gvSDxkCNZRzWXCv1rU6IHDggSw67cvf+i
lAo8CtEUpZOCRLul96F0HVRQDinlrXUSJEobWAkk9VKhmsJk8jxAkDhapZSu
PESFBKGuIIVoQaJWZC/Z8xcVeof2xueXChJ30X68LLxAhXu9Yb5uTYJEfODY
WbZKhXjPiluaQ4JEhy7Ve0abVDj+NolDbEGQ+H9/Hvzfn0f8f7nSa1Y=
"]]},
Annotation[#, "Charting`Private`Tag$16797#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{-2, 2}, {-7.999999020408203, 7.999999020408203}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{3.8065953617652893`*^9},
CellLabel->"Out[27]=",ExpressionUUID->"c5972e9d-e9dc-4697-b6f3-6d4fe485e4ea"],
Cell[BoxData["\<\"plots/ch2_xcubed.png\"\>"], "Output",
CellChangeTimes->{3.806595361878208*^9},
CellLabel->"Out[28]=",ExpressionUUID->"ba06464d-577e-42cc-9719-2f714add4bf6"]
}, Open ]],
Cell[BoxData[""], "Input",ExpressionUUID->"3a1b1555-4cd9-4fc5-9fbd-1f6449038c94"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"example", " ", "of", " ", "a", " ", "concave", " ", "function"}],
" ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ch2concave", " ", "=", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"Sqrt", "[", "x", "]"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"PlotTheme", " ", "\[Rule]", " ", "\"\<Monochrome\>\""}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{"\"\<plots/ch2_concave.png\>\"", ",", " ", "ch2concave"}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.806594990550703*^9, 3.8065949912132607`*^9},
3.806595057736477*^9, {3.8065952139187803`*^9, 3.806595216426901*^9}},
CellLabel->"In[25]:=",ExpressionUUID->"79bc1e7c-9ac3-4195-95b9-c8ce0b2d132c"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}], CapForm[
"Butt"], LineBox[CompressedData["
1:eJwVzXk81AkfwPFhDH6o3JscM/xETbQ8L6lc3++iZLKeJCq0MsVYV5snraIt
VoenGlebiSQVz+ZsIqUsqnFlaF0RI8eYraQyjhjE7vPH5/X+82PMPrI7WJ5C
oUT+0//N+YWtaH34otMaraRoi2xHEHQyPPYyfoRrrN8yVP2LYbmh5lcG4wRg
teK9brUKWJleeU+lNxHmzt1sPch9BDl1l+k0RjK0m3puGvCrBovPh7nLnBQw
mxCW3CmvhYGVN5YWe9LhRnFRmeGBpxDhGBM5S78GrwtsdtarCaC8a+jOtMt1
SFDx/JnuWg/z4R4iKScXxCPmsdlhDeDamrb2S88t8BkfD/PmNkHnQuiVCfpd
2J94L6fdTwjHG42sPvMLoV3IHdxs1wprMrpaProUg5O1wiFSqw3YTKR+4JTB
xPa4f2eVv4TYYtWqyZ77YDlvOr36QDso9Y+Yf6RXwW5iyfqpWhf01v0RM/6u
CjIonva+AV1QWMB7/oH/GPyHuvseFXaBZ7Rn4JhLNTQ9X52l79oNV4nHV99y
asGu/0FrZtgr0LzeJC/teQbtw06au7i9kPci9+gHejOsD2h62OYngmneA+bg
pWaIf2T0gxJPBNs5LeIOWTMU1MXTarpEME6d9Xnc+QLiNxBSvscAbHH0tEs+
LwQVNdVC2uY38GfZorz555dwf94/OH12EE6/sGBZB3ZCzi++EfNZw/A7/6FZ
0W+dsLCfbVNYPgwdPGfqWmEn1HN5NZuFw2DK2Ve9emsXWOded/+0OAwvqEkb
KVrdUC03UtcTMAK6jv2aLxteQbjIdJD2jRhKy5L7Izb2gUmomyT951EY0xy7
xArqg42MMJ3wi6NgfpzltO5KH0Q6SSysckfhpoNqnljWB6KUug8JDaOQ3nwp
xK++Hypsnoa4a0vguDhF6hYwAIfoAc4ZxRLIVW35VWPbEFR/2NGH7X8BB9qv
jUeLwab7e4/Tk+8gSrJeXFH6Hupnywc/F46DinGS+eCWCYi1PRPnazABXPUW
Zt7BKXhzrTwjL1sK7P49tVThF3DQf2hnozcFR+uT2EfM54H510HnnmPTwP9J
zXu1+1fISzSzOZU/A3lx4WNWeyko12iVMjnwBRJzF72mx+VQx+HwRtbULFA6
h7D6JBV70oLdEmbnwOxYSOweJg3Vtypn+inOw+hMpq/qH4qo9DbsXwmyeWBJ
wk6lH1XGgxbrNtXNLoDnaOoGIyMVvEvt29b/bhHGnrPPNJWoYuVIpnPPs6+w
UeOVoUvgClxojCQjf18CFZgJEk2txPKJVfl/xi6D20e/WRMfdeSVfjyyn0nB
3meH5fwsNDCrwESalEHBBxcEPzBmNJBxDl/6TFEwhBYz1NamiZP8wJCRfXJ4
KDrugVqWFkr9Ps3ceSCH33I2tHkEaSMrtb66YaU8vtS0UI3ZqoPB6sO2aZHy
+KQ0MduCqosf6epCX4E8xskxdwkHdHHVjUBBPoOKKqKTO6IqvsHXT4Kas09Q
UVJgfCU3fjXGVdltt2yh4pV1egpVPnrom/mmzcJEAVOzQhqDGGuw1/WTVDta
Af2uHGhTe7sGA9JKzkGtAs655stya/TxyN21l59o0FAscY59dt4Ad9uXUNIP
0PCWo7V+a5AhWgFbcL2UhiVnYzQ4lkbIdqdX2stoeN7n0E7qjBHaslheR79T
xE2ivLvnW+lYVOa1q5ariLz12SWtOxm4J+JSkKxbEU/XXebtrGKgR9jTKGsT
Jfxe3yf/hakxJrr1ZmpHKOF3UY3+GsnGmPOm/ZL1PSXMNWCbCmeMsXrL+xZr
mRKaPv/fVU9/E0y71Xoj3UEZUy2fMTtqTLDUThw5fkoZQ6YU2puZJC6KdPzV
BcrI5k8yklNIHD0ZbdmhQGBEovciK41E/irNXimNwBjvih61DBLLbRtjNJQI
vDATw029SmLTtyf+u4sgsHSrbCEzh0RPjoVe2woCZU+XXxUUkfg6yru1QZfA
1A61y4JGEhdqiq6XriMw63Zk6LlmEp34e0qE6wm8fazNZUcLiSsMWfwxJoGV
uqnzLW0k1pkaZ5hZEijy0wrt7CYxcXNZTY41geZiPZcRMYl73QWVyXYEWlWc
NLojIfHAzNJigT2Bdmf7ZcFvSQz9etNW4ECgh3nOvfdjJFq2GictOREYHc4w
kkpJ/El524VoFwLjHRJk96dINLB5/2OKK4FnV4x0HZsh8SIhD8XbCOSV3b44
N0fibS/ec4kbgbfOKHAez//z19L7j7w7gUVewc7xiySOGejo0lkEVpg0GDot
kTinzS2230lgzZSZbHmZREHeWdt9HgT+DZ68KX0=
"]]},
Annotation[#, "Charting`Private`Tag$16202#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 3.16227762790024}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{
3.806594991616838*^9, 3.8065950721103373`*^9, {3.8065952174056787`*^9,
3.8065952306994247`*^9}},
CellLabel->"Out[25]=",ExpressionUUID->"8abf78d4-b5cd-419f-8a45-b1f501fbb7c5"],
Cell[BoxData["\<\"plots/ch2_concave.png\"\>"], "Output",
CellChangeTimes->{
3.806594991616838*^9, 3.8065950721103373`*^9, {3.8065952174056787`*^9,
3.806595230801259*^9}},
CellLabel->"Out[26]=",ExpressionUUID->"45a27d09-b85d-471b-b17b-8bd135fd4bb2"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
RowBox[{"(*", " ",
RowBox[{"example", " ", "of", " ", "a", " ", "convex", " ", "function"}],
" ", "*)"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ch2convex", " ", "=", " ",
RowBox[{"Show", "[",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"x", "^", "2"}], ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "10"}], "}"}], ",", " ",
RowBox[{"PlotTheme", " ", "\[Rule]", " ", "\"\<Monochrome\>\""}]}],
"]"}], ",", " ",
RowBox[{"Plot", "[",
RowBox[{"x", ",", " ",
RowBox[{"{",
RowBox[{"x", ",", " ", "0", ",", " ", "10"}], "}"}]}], "]"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{"Export", "[",
RowBox[{"\"\<plots/ch2_convex.png\>\"", ",", " ", "ch2convex"}],
"]"}]}]}]], "Input",
CellChangeTimes->{{3.807052991142458*^9, 3.80705302771627*^9}, {
3.8070530764737453`*^9,
3.8070531000869303`*^9}},ExpressionUUID->"c276ebde-231a-4ea7-966e-\
693a053326a6"],
Cell[BoxData[
GraphicsBox[{{{{}, {},
TagBox[
{GrayLevel[0], AbsoluteThickness[1.6], Opacity[1.], Dashing[{}],
CapForm["Butt"], LineBox[CompressedData["
1:eJwVlvc7FY7/hu2sZBSRjnGsrMysnNcLKSRJZhlRGSlJiSQqCZkpksioiAgZ
WXlzkC0zkkRmNscWvp/vT88fcF/3fT1CDtdNLtNQUVFZUVNR/f8m+jkwyF8K
JXU3JhPGZOzVazoFDS0EXYD+YZpK59lezZ2vFQGCgneAcMGDfcdkP4ktuiiX
ufchqLO0nMmrJ5ESK8MF6AVDIPDj4PZzE0uS9NyliB2nSNhFx/yvIPca6Rfb
6+1/PdEwejus06LejySSxnRkYzMGznZ9Tn0VEEa6qul5bVXgJehMv1yxM4kj
5XcNvl3SSYDkAsv8Ap83pA1Xw/4FpyRIMGFTeJCbTUqm7g9Z1U2B2jW3hLmy
QtKxlqeiKz2pIGFVuFeqvoI0EXeiasnlLRhlO1RNKtSSwi5tWVM234Hf1/YD
3gHNJDm5/LWF8HRY9T/QndbQQercdH4+L5AB8ewvPHRNekm36whyc3mZMNGb
Yz63PUDie9bVNKOTBadIgx0pPsOkCtsnTtPd2fB6Z2/Cc9kJkoMk0k455YDk
n0OnnHJnSDSbPt+WfHOha1gyQJJlkdQ1aHZwSTcPJi/8vTBQtkxK+yrnSmH7
BOJMcxlRK+sk7yyWksWeT2C1z7pwb/02ySB6jGExOR/EpDKGxwk0wO9dZbrg
UgCX4n2C+xXoYdYmIXVeoRCqe5V6pdMZoVLHa35usxDSFVwtHQNYIfqQCWmu
pggUB+PIOU7scGmPTNhs+Gc4nB8x8aqBE44s7+qbMS+G65MpHR9c98Gun3/E
ZwRKQKAmUU7VZD/0Vn7xnJ4ogSsj4TIVDw5AZlpc9VReKfiYVVz/vU0A37Cb
HFM+ZVBSbcMq7yQERh5GdpM65aApkeEQ50MEQctD2X9Zv8D5lbrjMuWisKhJ
tznR/QXEdi48DJGVgFim0thxp/9gh7bi3LlcGSjwMvC4ub8S4oy9f390kIOE
SRVeim8lvLH5QkdkUYBAG9FKj6FKkOXg5KfrVAS3Nk6nRd0qqLwqWd1dpgwW
OlRsHplVcD70SZFInQpg0UzBAhsZQlIetz9eUQPOhHqahR4yKDEUBDLVk2CT
rSjD/Wg1JBK+fa4qQhh58MZ4PrkavAgnnw4RtKHIye/1nEsNzAPT1W4FXUjq
c9W93loD3RoTUT6DxyH4lNX0rEItvGgLGhJJ14Nzikrqs5u1cI++7LZNgCHo
pAkNXbvwFUZHpc4NxRuBNO+e4Jmar9A7F9qZ6WQM29t/u6fD64DAbeAR22AC
4zd6fK8u1kEiZ8qqKacptI3UEKfN64FLu7PpnasZpDQm3ZgSaAB1sTeR8iaW
sBRXKPk7rAHE3Y4oj9Ocg+NOTcMd6w0Q++rmQH3DeZimXTUr7WyE3rP76NgS
7QA6WPd8xCZY4BYV9u2+ANHJwvUp2U1AqR3ZxfbXHlQ1jdRDgprBNaNSPVnl
EoSyXKL4LjUD48b8Q/ebl2Hgx50sd/sWoNTMPr73xREe3X5HsNRoBZIHD8vO
PRdoy/lHIz73DYxv58m3l18HTmCy3S3bBoGfZ/4zL3MHDbHn6kGX2oDyOIbh
UMoNiFjKoPi0t8H1fosG1+CbUPxTqW1pVzvY2lVIWDy5BUPk/7LcSO0gknPa
jT/WE5Sedl92+NAOcuO9BxSbvcDW+4J2/1A7xH/9lE+/6g1BdlME8/0dIGN/
92mBtA/0yVD36gd2wOnZSfFPJb7g3yhtIG/XCWlisyydcg/gfd5nsQ8xnUDf
O2jltPwAOuK0aUWbO4FQY8zuX/kQRJwsy/erdYGsqU1X45VHYGQ0HBd9vQsO
TTVN6xkEgpeymydrWhe0pJ4PGJB7DI20j2SpuLpB8vahmAmuYFiaZGPx0e/+
Xz8faWWyh8DBjpfjFP9uqI5Qbz247wm4J+ckj093g2l6HJQohwG35k/Ob1+/
w/mzEid4rkUBijjO6W19B/VVvppbrE/BhWWhiazYA4cpZgync59C+Q+GwKLk
Huh1/fDwG/0zcLitsJro0wsrgozrDpMxEGbzpZMnrxfavHJ/7cqNhcJjerlP
x3thdnF8+YfPC2DksnUJNP0B5fXJhfaCL+FjTsjPq7J9cCY0SCIiOwEmOSfD
DOz7wNa8++VaRCKI3zYgSTzvgx6rvR0hnq8h+ShLyvB6H7iPBKLqoWSIbghz
PFf7E7QlyEbVYqnQKj3Do7r2E8aOuO3IZqcCS9Sphn1S/fDDVn7O/8gbeGTO
Jt0e1Q8n1PNHN8+8hdvDkQsnrH9BeK1sZ3B2Gnw6Pp8qGvkLMoJYXhkYpsNc
hrEpLfkXpCRfOqE3mw7O7hyfK8QHYJeXKKvI0Qw4txXtq0wZgIit1Kx4qixI
YmkK4NAdBAPxJSmLA3lA0rxrfd92EKajUcEgKA/63aSU57wGQT24b1t1OQ/2
d4SONWcOAgHFc4T/1+GncYb6wexDkCBZPtSdXwByjf+EVg8NQZ8B3SlzuUJo
3czauKwzBNoFKzt0OYXAbLc7S+f2EMxq+yruyi+CANFWtp2fQyDjWJFu/r0Y
hC38xq8tD0HtLroRqsslUBksW9nP9ge0OJWM2FZK4N9UxI1SrT9wcdGx+5pA
GXh+Ot3lmf4HIr+Oj+1EfgEnaH857TEMlW/8kvW8qoAqdaX0Z+gw7JOvLH7c
XgVxdPz9jW+HoWxqkiwoQ4b6BkdCxvdhsDzP/vL2BBkkTP+lXlYfAXb+wWIW
9xqYcBbPGqAeBc4Ih6yt2jq432TY0sI3Ch2ctEXvVOphv6zHbLniKOS0bDoM
Z9aDHqVc7tXlUZgyIn6UjW2AjHsmhRYNo8CqSlK8fr8JrkTfq2iLGoN6jr9N
q2nfgGY59fd/GWPwlu4i/TBvG8Rb1FPlkMcgebcTvZJ9GzTyc+mEL42BzapJ
8avFNpBKf1+nbzkOJo6hv0oFO2C6rLONLDABzS799LuyuuARYX0hT3UCrEtW
amhouoH/AYEr5cwEiK1UZTBZdYPhcRcz/4AJGPzDF6DF/B2y27Z/aIxPQLSo
/4nYOz3gNnpouODjX8hilJytCu+DQdsfjFUNfyFcm9v89HYfnO0Nlm0Z+QvN
zG2cWu4/QbVp/M4o3yQ8Ui7SsrHsB9q8d+zcQZNAFcQu3KQ2AHG+QiQvuyn4
xltxmE14CJhX2i4G+EyBn93R65KOQ3Dv+v2QyJgpcNLqXGP/MAQODr+70pum
oD2vVVxH5Q9I6yW69qpMA628+bqT1TBUcfG+VGOfARX998/2fx0FpfD6Cl2p
GWgzyex+wTMGaQzeI2eOzwDbaQ+mTZcxCFv/fviK7wx09HwfvckxDua/n3+N
n5iBVtVjIrauEzCZyb60WTkLftM3jCMNp4BZ6JH4b9V5sLRPrDs2MQ/1R58e
9tOdh3mlT/qCBxfgseVrlYMm82B3j+e8l8kC0EQVnzjvOg9v+09Kv6pYgI3t
aaeexHkIY5bJak1YhKl+s/ffaBZAbo+KRNSNJchcc8h127MAFtZaQ/4fl8B5
r3vxbv4F2DvS77Y6tQQjJ5/Un1RegLIsV5kHzsvQX1oxUee0AL5PJu32Oa9A
c5z4ocrmBbhAsSZTHqzBkwIlebsfC+DJEWhfWbcGem1aatujC5AeI5MjxLYO
Nbus9Y/uLIDszW/J7xLWofx2lEux/CKE8D9haqzcgGzT9Yzc2EW4oGSqjmJb
EMHeJJlygQL0fRdvzChTY4nKwUIjNwpkvv29WuxIjSO21+HfXQr4kL+sTL2g
Ro1sLlOLFxSgEwp492STGif0re/tbqWAd++3rtI6GtQJmPl2R2MJRGU6VZxv
0aFbJpwT11+CrSYInP9Ah/HtT0e6zJdgRZzt5d9hOpwXOLJ+2GMJZodMPeXM
6PF1uZ/w2PslsDkSXyWkyYBry3s8TbiXgfR+nZqPyIjEgw47O8RliE21Xl2x
Z0SjYwUh2fLLYKX/wckohRHfRVu+Zjy1DIqMikrXhZjQ5HBKXUXAMpDD3BZC
xJkx21mBT2phGT7qEBZyT7Kiw0/T/2ibV8Au83GvoC87Mr8aunbjxwqMTVm8
5nvDjp/OufH/HluBfE1/S6tGdqTtC7pTSr0KHBg1m8bLgW97SxVvqKxCpK1z
eGgZB451C74fSF2FadfkSDIrF15pm44qubMG/PomqvLj+5Az6g6IB61BzOda
qys83Fh6mmH2+fM1SGuznl88wY0s3wROuuesgQJ90A9KBjdmtZjQi4+uwdaY
jGzFDR6cbSy+89x4HRR9iOxkdl68UfvI4br4BrjePbayHsGPhJHjDCuKGyDO
48XVU8uPTTRMmb64AW0PLXlot/hRFMMXQqw24JjZGWr9qwfxR2nM/behGxDP
K5Tx3IiAWrlpr3/MbQBTvS2LCocgcryq79Mp3oSh+MSUN3TCWFHyxK+xZhPM
qFsPnhQVRtdeQ+Ez7ZswXnVugnBcGGv3tbvYTm5CzUoKo2GwMN6J+rHmzf8P
Gh0D+yrZiDgUOMn98f4/uBZURlQVEcE8d9az+/W3QLPOdOeuhxg2x3PdyTbf
gn+yQQOaCWI4VsOXpH1pC+7rM4+qfRVDPt5DU1f9t+D2iRwY4hPHR1W6AVWF
W0BWTeGmfBVHc07//CvC2yBvZbFiInkIN/IXuL5sbsP0ExtKoIA07h1YUzNh
2gHDZ8osq8bSKMtIdWGcewec/+ipZDyUxovWbFkcCjug/fNYbvuYNDbTSR1z
dN4Bmj/bTmqfZPC12aVbe7p3IOZm1tlYs8OYctd1Us6CCiev8cnvcZZHuUqm
tSAbKlS4lZssHCCPlXTv6X9fpMJ8EY94s9fyOBg+IhjuToUlHaYRfN3ySEi2
sfgbQoUueTlixGMKGF9zuialnAr9L0fkHZNQxOjdSq85hf/nnVfEby8mZRQ2
6fjgIkGNToriH7MklDEv1r2kUpYaH+3uE6fTU8Y2gewuNw1qHFcRCzgQpIxs
CmIsTabU2GL6LGOW4Qg+Md/vHRBEjV2p7801d6vgw6R/Z5amqTHgFYOkorIa
GssV35CiUGNNrbeLhqUaEqpuPnVYp8ajv4YEnO+qYemfybY2ehq8/b7Q/DBZ
DRdFf5zOJtBg6SGeT15n1NEhq/CUozENMkWyXWHw0kCtEjf93nwapNLV+fdt
QBPZDCRd9pTSYHjr55I4BhL2940GH6+kwUMrBeIhsiT0/mddX9BMgw0ytX5D
fiTMhZMnno7SIPlk6JaHEKDgV3FdAx5anGh0Iu1XQaTqHMRyH1o0aJN44/xM
Cx/9rUjxeUCLx497rDR90EImqkQatWDa//E5k6pXo4WcMlY1hTG0mKS4pR+x
rIWiQe0ncnJp0TL6ea2hlTYaaJCNUsdoMZt+afSdqA4+e/PGOtiEDjW6+Zp0
O46h2C1Hb1NJeqQzb6FX9ddDGfXfZ5Pk6NFj99V8xwQ9VKKyPDx5hB7TmZZc
c0r0UDtMf8xfhx4vv/+gEbmkh7ZvpU0/WNPj21cyjE9c9TG2a/EwTSQ9Zpw8
vHbH1gDplf3Hcyj0yGvzRz3P0hBHll+Ys3xhwLDga/rbxsaYqqV481c1A/Jl
+U/GXzJGu/DWyJxGBpxY11LS9zbGPhH6hrO9DOhpoDTdl2SM7Wc9NBIoDEip
3c3TNWeMFXmGgjKSu5AlaCpL7NkZfHGNetLoxS5sm/EXjhs3QYPRK/eibzBi
0ft3o+yNZnj8HjHrmDcjSniYDm4MmaH2vv6+FT9GtGRvf7S2bobquqdUz4cx
opyz3oqspDlKvjtMIaYzYlXZpYyQUHNkubzkXNjPiFf005t2zlhg88g9094T
TNgsE+KpMWuJRiNRUgQCM7rQcHyycbTGZqmRLmsRZjxPSxiIemCNJ2+q+L2S
ZEa2+SORPQnWqEcz0LZfhRl/lwy+S+q0Rm1BqdtcxsxYyzqQeUDbBpWtaysZ
HzKjyiBBv0nYFvm71s0oo8xYwZu+ZkCxw8lqh/v12Sw4xqaj5fHXHgWe9l6J
KGBB5lDtbapNezS1NTIzLWNBj09eyQmsDlixpiY5WM+CK1SV2RuHHTBahqNr
dZgFY343JJh4OaDGi//ExflY8YXfTysvxosYdoX/W+BjViz3yGCqUrqEshzf
D+rY7cbKWSP+yiJHZIZl+34KG5okp1Su0FzFEzPnVoXN2FE+0aPttN0N7CVf
oj4nzYF05BxNoaOeWBhcYyu4zIGpqi8dDC7eQUd6z8HWVk50JlCOBoX54UWP
u4Ws8VyYF9Vx34/+IR52kmo1tN+LHIHTi6x7AvEbpzSLp9o+bD8e0x1aG4xl
Hx++kqblxs1wbX+6jDC8Sy1p3PyLG3UMTE1bcqKQud9Hz62ABz/GdC2/1n2G
o2lCz5N896PkmqXUs4UYfC7BS1dixovbUBItJvoSo+Id6+wF+ZD7kTWVqnsC
nntu08o6zoc/kgrfPFpLwrVj79aTKg7gvTie+wr7UnF4VNubHMSPLQJRftqq
bzFVU/5Ai/1BpNLKLHpVkYbZgZ4cTjIEjC7WuM97OgODzC6epF0m4NbVtVDh
XVmo3J+SEdQigDcMdhtuqORg3KFX2S0nBfGvn7xGuUoe+leGx50sEcRmu1FP
Gt58PHXA7F2jiBBSN00/6eYuRC23uvMcIUK4P+euveu+z5jE7yDSvCyEaecb
Nvc5laBIdXqs0XlhFE4NmvxYXIZRMmTJjgph1OzpaJAWrUBHCl17gyQRu9tn
Y8rvVKJD3qJgSCQRDR+XqVMGqvDqw7P/DJ4SUeXoZa4Lo1Xoebagh/UZEY/e
vJ7eOlWFwcueEVGxRKyjHaHJW6vCj2rrmy8Siej1kj7qCScZ16t2vqd9ICLh
IrX+0+NkjOpgDa+pI+I/HSbHuRwyxr+55vy4gYg9p5J0nxeR8c2tVh29JiJS
3YqbVP9CxiLuqI2mViL2nlgJDG8kY/85LufObiJO7cix6I2SUXyYV+fPMBG/
lmnFch6oRrkCH8LbUSIm6vYtdApVo3rgz/XL40SMoQzxvJCoRkPxxNy/k0Rk
L35YI3ykGj1cBQkLC0RMsBp/f/pMNfoefbD+iULEQL3vFwQsqzFw95+uW8tE
XNv9ZXTethrjct6Erq0RMXWryOLl1WpMvU/nVLpBxBOZV3Xdb1bjhzOXtX3/
EfGsgh21vk81Fgh/PUjaJuKvid+hxAfVWEERW//f4UNpCRzdCarG/wP3yzmL
"]]},
Annotation[#, "Charting`Private`Tag$4901#1"]& ]}, {}}, {{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6],
Opacity[1.], LineBox[CompressedData["
1:eJxFxXss1AEcAPDToXZOc5QId7+TuZxH/NGWlke0Ja8lLttZjzvcKa+Y24RK
Im5GV908d7sd0cyctNOmxyVEXte4Usu1zLkZsdF1cSjVH77fPz77MPnZ51J3
kUikmH/+L7vJtw5IqQzeeUBLRCcSV0J23h5U3yGI67Cst4phRYjhjCBR5hqj
HtZupklXGG3w7ulZ1jKjB1aMyHO+M4ZhZad4OsPvCywMmahfytXDWQYvvUq5
AFOYpaxvx1bgartRtuKyEeZPJ7wmj/2Cc96W8rNZG3DXNWq805nfsKIwfdE/
kRS6c4l8K+7nkgVM0s6Eviwgw555gvwEthU8Z6o9b/PKGo40XL3xIGcPHDsn
8abTKfBiP7/4XYcN7Eebcgu/ZAtTQkw8nXEvfHqZu+bOsYM/96VYcH1ocHfF
wEXChAusRDMajT2cnFvYTW1wgI8IvTXRvH3we3sfG1HgfviFsqTRh+wIF1qw
z459xSm6gogs1QHY0MqUyoucYOlhZ8sejjMsaRAM8YiDMFd6QUOdx9dPtZjl
ahdYbwjL7yt3hZuCAlzGeW5wR5mIJvSlw+Wc5CiyCT+qU7SVjzPgOq/GjvEo
Ar7VW1UX1YPHuHBaRjyY8MmsoSSaGJe78j3GTLhH/+Oa2CR3WOLbx55U4wKj
5cQw+xDM7/pBiO/hGSXxW5H3cVG86hP1IV5hElVLanBloHmzVoab32xPtbbj
kklq1cAQ3tCcmXZ3GG/O04RHjOLPHCUboxpcx3VI037EWXrn8Fk97q8qoD8y
4MfLps2p83g0S/ZkYRHPTSfoq6t40Ynb5qdGvMx29kOeCa/rbK5cX8ebii2F
zzfw9rjUsKItXOU+6Bb8B1cbPc3b2/hfxrMqyQ==
"]]},
Annotation[#, "Charting`Private`Tag$4943#1"]& ]}, {}}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
AxesStyle->GrayLevel[0],
BaseStyle->GrayLevel[0],
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameStyle->GrayLevel[0],
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
FrameTicksStyle->GrayLevel[0],
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0],
AbsoluteThickness[1],
AbsoluteDashing[{1, 2}]],
ImagePadding->All,
LabelStyle->{FontFamily -> "Helvetica",
GrayLevel[0]},
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0., 9999.999183673492}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic},
TicksStyle->GrayLevel[0]]], "Output",
CellChangeTimes->{3.807053095210636*^9},
CellLabel->"Out[10]=",ExpressionUUID->"9045664c-cc76-4e4e-970c-827c5ed5de89"],
Cell[BoxData["\<\"plots/ch2_convex.png\"\>"], "Output",
CellChangeTimes->{3.8070530952950907`*^9},
CellLabel->"Out[11]=",ExpressionUUID->"1b1ac144-11d1-4224-9e4b-1e6126b87de6"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8065949748109407`*^9, 3.806594976003377*^9}, {
3.806595431924883*^9,
3.806595433803117*^9}},ExpressionUUID->"690f8cda-563d-4885-9ab2-\
592b7c03ec8d"],
Cell[CellGroupData[{
Cell[BoxData[""], "Input",
CellChangeTimes->{
3.80659465842793*^9, {3.806595063786771*^9, 3.806595066724248*^9}},
NumberMarks->False,ExpressionUUID->"a29588de-b8ff-42f0-8d9b-4d851627f1dc"],
Cell[BoxData["\<\"/Users/kevin/Documents/GitHub/ECON-1011A-Textbook\"\>"], \
"Output",
CellChangeTimes->{3.806595064915134*^9},
CellLabel->"Out[20]=",ExpressionUUID->"d2acdf04-0569-4df8-904d-0f1d3d098fca"]
}, Open ]],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8065946529942503`*^9,
3.806594653184737*^9}},ExpressionUUID->"018d1456-75c5-4c1e-acfb-\
942930a2cdbb"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.806594045784608*^9, 3.806594048742695*^9}, {
3.806594655975065*^9,
3.8065946563795567`*^9}},ExpressionUUID->"4aca56f2-d664-4782-8378-\
934e7c3380d9"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.8065949231853933`*^9,
3.8065949571824207`*^9}},ExpressionUUID->"df58dcdf-da9a-4b8b-9066-\
c698e9d7f1f3"],
Cell[BoxData[""], "Input",
CellChangeTimes->{{3.806594972370376*^9,
3.8065949725383873`*^9}},ExpressionUUID->"f8fd6c6b-34b9-434e-b500-\
6582f68c4e16"]
},
WindowSize->{808, 911},
WindowMargins->{{Automatic, 407}, {113, Automatic}},
FrontEndVersion->"12.1 for Mac OS X x86 (64-bit) (June 19, 2020)",
StyleDefinitions->"Default.nb",
ExpressionUUID->"9091a0a6-5454-4499-b716-ff8a1aae973e"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[580, 22, 152, 3, 30, "Input",ExpressionUUID->"100d8795-7eb0-4c48-8def-361d44d86222"],
Cell[735, 27, 5661, 107, 376, "Output",ExpressionUUID->"90c7e7b3-0479-485c-b223-9430c5626de1"]
}, Open ]],
Cell[6411, 137, 1232, 26, 94, "Input",ExpressionUUID->"5be14f3f-2cbf-4800-8ad7-c90ed536596a"],
Cell[CellGroupData[{
Cell[7668, 167, 835, 21, 73, "Input",ExpressionUUID->"c6a0636a-65fe-4f80-a309-0e3f5ba361a0"],
Cell[8506, 190, 11407, 210, 240, "Output",ExpressionUUID->"c5972e9d-e9dc-4697-b6f3-6d4fe485e4ea"],
Cell[19916, 402, 176, 2, 34, "Output",ExpressionUUID->"ba06464d-577e-42cc-9719-2f714add4bf6"]
}, Open ]],
Cell[20107, 407, 81, 0, 30, "Input",ExpressionUUID->"3a1b1555-4cd9-4fc5-9fbd-1f6449038c94"],
Cell[CellGroupData[{
Cell[20213, 411, 855, 19, 73, "Input",ExpressionUUID->"79bc1e7c-9ac3-4195-95b9-c8ce0b2d132c"],
Cell[21071, 432, 4438, 97, 236, "Output",ExpressionUUID->"8abf78d4-b5cd-419f-8a45-b1f501fbb7c5"],
Cell[25512, 531, 256, 4, 34, "Output",ExpressionUUID->"45a27d09-b85d-471b-b17b-8bd135fd4bb2"]
}, Open ]],
Cell[CellGroupData[{
Cell[25805, 540, 1032, 27, 73, "Input",ExpressionUUID->"c276ebde-231a-4ea7-966e-693a053326a6"],
Cell[26840, 569, 10378, 196, 227, "Output",ExpressionUUID->"9045664c-cc76-4e4e-970c-827c5ed5de89"],
Cell[37221, 767, 178, 2, 34, "Output",ExpressionUUID->"1b1ac144-11d1-4224-9e4b-1e6126b87de6"]
}, Open ]],
Cell[37414, 772, 203, 4, 30, "Input",ExpressionUUID->"690f8cda-563d-4885-9ab2-592b7c03ec8d"],
Cell[CellGroupData[{
Cell[37642, 780, 192, 3, 30, "Input",ExpressionUUID->"a29588de-b8ff-42f0-8d9b-4d851627f1dc"],
Cell[37837, 785, 207, 3, 34, "Output",ExpressionUUID->"d2acdf04-0569-4df8-904d-0f1d3d098fca"]
}, Open ]],
Cell[38059, 791, 154, 3, 30, "Input",ExpressionUUID->"018d1456-75c5-4c1e-acfb-942930a2cdbb"],
Cell[38216, 796, 203, 4, 30, "Input",ExpressionUUID->"4aca56f2-d664-4782-8378-934e7c3380d9"],
Cell[38422, 802, 156, 3, 30, "Input",ExpressionUUID->"df58dcdf-da9a-4b8b-9066-c698e9d7f1f3"],
Cell[38581, 807, 154, 3, 30, "Input",ExpressionUUID->"f8fd6c6b-34b9-434e-b500-6582f68c4e16"]
}
]
*)