-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_snn.py
246 lines (205 loc) · 10.3 KB
/
model_snn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import torch
import torch.nn as nn
import numpy as np
from spikingjelly.clock_driven import functional, layer, surrogate, neuron
from searchcells.search_cell_snn import Neuronal_Cell,Neuronal_Cell_backward
import matplotlib.pyplot as plt
def logdet(K):
s, ld = np.linalg.slogdet(K)
return ld
def find_best_neuroncell(args, trainset):
search_batchsize = 256
repeat = 2
train_data = torch.utils.data.DataLoader(trainset, batch_size=search_batchsize,
shuffle=True, pin_memory=True, num_workers=4)
scores = []
history = []
neuron_type = 'LIFNode'
with torch.no_grad():
for i in range(args.num_search):
while (1):
con_mat =connection_matrix_gen(args, num_node=4, num_options=5)
# sanity check on connection matrix
neigh2_cnts = torch.mm(con_mat, con_mat)
neigh3_cnts = torch.mm(neigh2_cnts, con_mat)
neigh4_cnts = torch.mm(neigh3_cnts, con_mat)
connection_graph = con_mat + neigh2_cnts + neigh3_cnts + neigh4_cnts
for node in range(3):
if connection_graph[node,3] ==0: # if any node doesnt send information to the last layer, remove it
con_mat[:, node] = 0
con_mat[node,:] = 0
for node in range(3):
if connection_graph[0,node+1] ==0: # if any node doesnt get information from the input layer, remove it
con_mat[:, node+1] = 0
con_mat[node+1,:] = 0
if con_mat[0, 3] != 0: # ensure direct connection between input=>output for fast information propagation
break
searchnet = SNASNet(args, con_mat)
searchnet.cuda()
searchnet.K = np.zeros((search_batchsize, search_batchsize))
searchnet.num_actfun = 0
def computing_K_eachtime(module, inp, out):
if isinstance(out, tuple):
out = out[0]
out = out.view(out.size(0), -1)
batch_num , neuron_num = out.size()
x = (out > 0).float()
full_matrix = torch.ones((search_batchsize, search_batchsize)).cuda() * neuron_num
sparsity = (x.sum(1)/neuron_num).unsqueeze(1)
norm_K = ((sparsity @ (1-sparsity.t())) + ((1-sparsity) @ sparsity.t())) * neuron_num
rescale_factor = torch.div(0.5* torch.ones((search_batchsize, search_batchsize)).cuda(), norm_K+1e-3)
K1_0 = (x @ (1 - x.t()))
K0_1 = ((1-x) @ x.t())
K_total = (full_matrix - rescale_factor * (K0_1 + K1_0))
searchnet.K = searchnet.K + (K_total.cpu().numpy())
searchnet.num_actfun += 1
s = []
for name, module in searchnet.named_modules():
if neuron_type in str(type(module)):
module.register_forward_hook(computing_K_eachtime)
for j in range(repeat):
searchnet.K = np.zeros((search_batchsize, search_batchsize))
searchnet.num_actfun = 0
data_iterator = iter(train_data)
inputs, targets = next(data_iterator)
inputs, targets = inputs.cuda(), targets.cuda()
outputs = searchnet(inputs)
s.append(logdet(searchnet.K/ (searchnet.num_actfun)))
scores.append(np.mean(s))
history.append(con_mat)
print ("mean / var:", np.mean(scores), np.var(scores))
print ("max score:", max(scores))
best_idx = (np.argsort(scores))[-1]
best_policy = history[best_idx]
return best_policy
def connection_matrix_gen(args, num_node = 4, num_options = 5):
if args.celltype == 'forward':
upper_cnts = torch.triu(torch.randint(num_options, size=(num_node, num_node)), diagonal=1)
cnts = upper_cnts
elif args.celltype == 'backward':
upper_cnts = torch.triu(torch.randint(num_options, size=(num_node, num_node)), diagonal=1)
lower_cnts = torch.tril(torch.randint(num_options, size=(num_node, num_node)), diagonal=-1)
selection_mask = torch.triu(torch.randint(2, size=(num_node, num_node)), diagonal=1)
tr_selection_mask = 1 - selection_mask.permute(1,0)
cnts = selection_mask * upper_cnts + tr_selection_mask * lower_cnts
return cnts
class SNASNet(nn.Module):
def __init__(self, args, con_mat):
super(SNASNet, self).__init__()
self.con_mat = con_mat
self.total_timestep = args.timestep
self.second_avgpooling = args.second_avgpooling
if args.dataset == 'cifar10':
self.num_class = 10
self.num_final_neuron = 100
self.num_cluster = 10
self.in_channel = 3
self.img_size = 32
self.first_out_channel = 128
self.channel_ratio = 2
self.spatial_decay = 2 *self.second_avgpooling
self.classifier_inter_ch = 1024
self.stem_stride = 1
elif args.dataset == 'cifar100':
self.num_class = 100
self.num_final_neuron = 500
self.num_cluster = 5
self.in_channel = 3
self.img_size = 32
self.channel_ratio = 1
self.first_out_channel = 128
self.spatial_decay = 2 *self.second_avgpooling
self.classifier_inter_ch = 1024
self.stem_stride = 1
elif args.dataset == 'tinyimagenet':
self.num_class = 200
self.num_final_neuron = 1000
self.num_cluster = 5
self.in_channel = 3
self.img_size = 64
self.first_out_channel = 128
self.channel_ratio = 1
self.spatial_decay = 4 * self.second_avgpooling
self.classifier_inter_ch = 4096
self.stem_stride = 2
self.stem = nn.Sequential(
nn.Conv2d(self.in_channel, self.first_out_channel*self.channel_ratio, kernel_size=3, stride=self.stem_stride, padding=1, bias=False),
nn.BatchNorm2d(self.first_out_channel*self.channel_ratio, affine=True),
)
if args.celltype == "forward":
self.cell1 = Neuronal_Cell(args, self.first_out_channel*self.channel_ratio, self.first_out_channel*self.channel_ratio, self.con_mat)
elif args.celltype == "backward":
self.cell1 = Neuronal_Cell_backward(args, self.first_out_channel*self.channel_ratio, self.first_out_channel*self.channel_ratio, self.con_mat)
else:
print ("not implemented")
exit()
self.downconv1 = nn.Sequential(
nn.BatchNorm2d(128*self.channel_ratio, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
neuron.LIFNode(v_threshold=args.threshold, v_reset=0.0, tau= args.tau,
surrogate_function=surrogate.ATan(),
detach_reset=True),
nn.Conv2d(128*self.channel_ratio, 256*self.channel_ratio, kernel_size=(3, 3),
stride=(1, 1), padding=(1,1), bias=False),
nn.BatchNorm2d(256*self.channel_ratio, eps=1e-05, momentum=0.1,
affine=True, track_running_stats=True)
)
self.resdownsample1 = nn.AvgPool2d(2,2)
if args.celltype == "forward":
self.cell2 = Neuronal_Cell(args, 256*self.channel_ratio, 256*self.channel_ratio, self.con_mat)
elif args.celltype == "backward":
self.cell2 = Neuronal_Cell_backward(args, 256*self.channel_ratio, 256*self.channel_ratio, self.con_mat)
else:
print ("not implemented")
exit()
self.last_act = nn.Sequential(
nn.BatchNorm2d(256*self.channel_ratio, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True),
neuron.LIFNode(v_threshold=args.threshold, v_reset=0.0, tau=args.tau,
surrogate_function=surrogate.ATan(),
detach_reset=True)
)
self.resdownsample2 = nn.AvgPool2d(self.second_avgpooling,self.second_avgpooling)
self.classifier = nn.Sequential(
layer.Dropout(0.5),
nn.Linear(256*self.channel_ratio*(self.img_size//self.spatial_decay)*(self.img_size//self.spatial_decay), self.classifier_inter_ch, bias=False),
neuron.LIFNode(v_threshold=args.threshold, v_reset=0.0, tau=args.tau,
surrogate_function=surrogate.ATan(),
detach_reset=True),
nn.Linear(self.classifier_inter_ch, self.num_final_neuron, bias=True))
self.boost = nn.AvgPool1d(self.num_cluster, self.num_cluster)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a =2)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, input):
self.neuron_init()
acc_voltage = 0
batch_size = input.size(0)
static_x = self.stem(input)
for t in range(self.total_timestep):
x = self.cell1(static_x)
x = self.downconv1(x)
x = self.resdownsample1(x)
x = self.cell2(x)
x = self.last_act(x)
x = self.resdownsample2(x)
x = x.view(batch_size, -1)
x = self.classifier(x)
acc_voltage = acc_voltage + self.boost(x.unsqueeze(1)).squeeze(1)
acc_voltage = acc_voltage / self.total_timestep
return acc_voltage
def neuron_init(self):
self.cell1.last_xin =0.
self.cell1.last_x1 =0.
self.cell1.last_x2 =0.
self.cell2.last_xin = 0.
self.cell2.last_x1 = 0.
self.cell2.last_x2 = 0.