-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
93 lines (74 loc) · 2.55 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import os
import time
import torch
import numpy as np
import torchvision.transforms as transforms
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, label, topk=(1,)):
maxk = max(topk)
batch_size = label.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(label.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].flatten().float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, iters, tag=''):
if not os.path.exists("./snapshots"):
os.makedirs("./snapshots")
filename = os.path.join("./snapshots/{}_ckpt_{:04}.pth.tar".format(tag, iters))
torch.save(state, filename)
def data_transforms(args):
if args.dataset == 'cifar10':
MEAN = [0.4913, 0.4821, 0.4465]
STD = [0.2470, 0.2434, 0.2615]
elif args.dataset == 'cifar100':
MEAN = [0.5071, 0.4867, 0.4408]
STD = [0.2673, 0.2564, 0.2762]
elif args.dataset == 'tinyimagenet':
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
if (args.dataset== 'tinyimagenet'):
train_transform = transforms.Compose([
transforms.RandomCrop(64, padding=8),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
else: # cifar10 or cifar100
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
return train_transform, valid_transform
def random_choice(num_choice, layers):
return list(np.random.randint(num_choice, size=layers))
def time_record(start):
end = time.time()
duration = end - start
hour = duration // 3600
minute = (duration - hour * 3600) // 60
second = duration - hour * 3600 - minute * 60
print('Elapsed time: hour: %d, minute: %d, second: %f' % (hour, minute, second))