-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSICNet_3users_meta_1loss_cc.py
241 lines (196 loc) · 8.92 KB
/
SICNet_3users_meta_1loss_cc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
'''FEC-aided SICNet - online training over fading channel'''
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import sys
from scipy.stats import levy_stable
# coding package
import sk_dsp_comm.fec_conv as fec
import sk_dsp_comm.digitalcom as dc # for calc BER with coding
# channel coding parameters
decoder_type = 'hard'
# cc1 = fec.fec_conv(('11101','10011'),25) # constraint length 5 and decision depth 25
# d_cc = 24
cc1 = fec.fec_conv(('101', '111'), 10)
d_cc = 9
code_rate = 1/2
state = '0000' # Encode with shift register starting state of '0000'
EbNodB = list(np.linspace(0, 14, 8))
num_blocks = 100
block_size = 2000 # number of uncoded bits per block
channel_type = 'time-varying' # time-varying AWGN
noise_type = 'awgn' #t-dist , stable-dist, awgn, radar
vv = 5 # t-distribution scale
radar_prob = 0.05
radar_power_factor = 4
alpha, beta = 1.8, -0.5
# alpha, beta = 0.5, 0.75
if channel_type == 'AWGN':
h = np.ones(num_blocks) # AWGN channel
else:
h = 0.8 + 0.2 * np.cos((2 * np.pi / 17) * np.arange(num_blocks))
# h_I = 0.8 + 0.2 * np.cos((2 * np.pi / 17 + np.pi/4) * np.arange(num_blocks))
# h = 0.8 + 0.01*np.random.normal(0,1,(num_blocks,))
print('channel type: ', channel_type)
# hyperparameter
learning_rate = 0.001
batch_size = 200
epochs = 300
act_func = tf.nn.relu
c1 = np.sqrt(16) # power allocation factor
c2 = np.sqrt(4) # power allocation factor
# quantizaition parameters
q_levels = 8
q_range = 8
def quantized(y, q_levels, q_range):
delta = 2*q_range/q_levels
value_max = q_range - delta/2
y_quantized = delta*np.floor((y + q_range) / delta) - value_max
y_quantized[np.where(y_quantized > value_max)] = value_max
y_quantized[np.where(y_quantized < -value_max)] = -value_max
return y_quantized
# build model
y = tf.placeholder("float", [None, 1]) # received signal y = hx+n
s3 = tf.placeholder("float", [None, 1])
def decoder1(y):
s = tf.layers.dense(y, units=16, activation=act_func)
s = tf.layers.dense(s, units=8, activation=act_func)
s = tf.layers.dense(s, units=1, activation=tf.nn.sigmoid)
return s
def decoder2(y):
s = tf.layers.dense(y, units=24, activation=act_func)
s = tf.layers.dense(s, units=12, activation=act_func)
s = tf.layers.dense(s, units=1, activation=tf.nn.sigmoid)
return s
def decoder3(y):
s = tf.layers.dense(y, units=32, activation=act_func)
s = tf.layers.dense(s, units=16, activation=act_func)
s = tf.layers.dense(s, units=1, activation=tf.nn.sigmoid)
return s
p1 = decoder1(y)
z2 = tf.concat([y, p1], axis=-1)
p2 = decoder2(z2)
z3 = tf.concat([z2,p2], axis=-1)
p3 = decoder3(z3)
loss = tf.reduce_mean(tf.pow(p3 - s3, 2))
optimizer_ini = tf.train.AdamOptimizer(learning_rate).minimize(loss)
optimizer_onl = tf.train.AdamOptimizer(learning_rate/1).minimize(loss)
init = tf.global_variables_initializer()
def fetch_batch(epoch, batch_index, batch_size, y_, s3_):
train_size = len(y_)
n_batches = train_size // batch_size
np.random.seed(epoch * n_batches + batch_index)
indices = np.random.randint(train_size, size=batch_size)
_y = y_[indices]
_s3 = s3_[indices]
return _y, _s3
def generate_data(block_size, noise_std, h):
uncoded_bits1 = np.random.binomial(n=1, p=0.5, size=(int(block_size*code_rate)))
coded_bits1, _ = cc1.conv_encoder(uncoded_bits1, state)
uncoded_bits2 = np.random.binomial(n=1, p=0.5, size=(int(block_size*code_rate)))
coded_bits2, _ = cc1.conv_encoder(uncoded_bits2, state)
uncoded_bits3 = np.random.binomial(n=1, p=0.5, size=(int(block_size*code_rate)))
coded_bits3, _ = cc1.conv_encoder(uncoded_bits3, state)
x1 = 2 * coded_bits1 - 1
x2 = 2 * coded_bits2 - 1
x3 = 2 * coded_bits3 - 1
x = x3 + c2*x2 + c1*x1
if noise_type == 'awgn':
noise = noise_std * np.random.normal(0, 1, x.shape)
elif noise_type == 't-dist':
noise = noise_std * np.sqrt((vv - 2) / vv) * np.random.standard_t(vv, size=x.shape)
elif noise_type == 'radar':
add_pos = np.random.choice([0.0, 1.0], x.shape, p=[1 - radar_prob, radar_prob])
corrupted_signal = radar_power_factor * np.random.standard_normal(size=x.shape) * add_pos
noise = noise_std * (np.random.normal(0, 1, x.shape) + corrupted_signal)
elif noise_type == 'stable-dist':
noise = noise_std * levy_stable.rvs(alpha, beta, size=x.shape)
y = h * x + noise
# y = quantized(y, q_levels, q_range)
# quantized, poisson, Laplacian
y_ = np.reshape(y, (len(y), 1))
s1_ = np.reshape(coded_bits1, (len(y), 1))
s2_ = np.reshape(coded_bits2, (len(y), 1))
s3_ = np.reshape(coded_bits3, (len(y), 1))
return y_, s1_, s2_, s3_, uncoded_bits3, coded_bits3
def generate_online_label(uncoded_bits):
coded_bits, _ = cc1.conv_encoder(uncoded_bits, state)
s = np.reshape(coded_bits, (len(coded_bits), 1))
return s
ber_coded = [None] * len(EbNodB) # ber of coded bits
ber_uncoded = [None] * len(EbNodB) # ber of uncoded bits
for ii in range(len(EbNodB)):
EbNo = 10 ** (EbNodB[ii] / 10.0)
noise_std = np.sqrt(1 / (EbNo))
num_errors_uncoded = 0
num_errors_coded = 0
uncoded_bit_count = 0
coded_bit_count = 0
with tf.Session() as sess:
def train_sess(epochs, y_, s3_, optimizer, message='Train loss:'):
n_batches = len(y_) // batch_size
for epoch in range(epochs):
for batch_index in range(n_batches):
sys.stdout.flush()
_y, _s3 = fetch_batch(epoch, batch_index, batch_size, y_, s3_)
sess.run(optimizer, feed_dict={y: _y, s3: _s3})
loss_train = loss.eval(feed_dict={y: _y, s3: _s3}) # not shown
print("\r{}".format(epoch), message, loss_train)
def recover_bits(y_, p, decoder_type):
s_est = sess.run(p, feed_dict={y: y_})
s_est = np.reshape(s_est, (len(s_est),))
s_re = np.sign(s_est - 0.5)
coded_bits_re = ((s_re + 1) / 2)
coded_bits_re = coded_bits_re.astype(int)
if decoder_type == 'hard':
uncoded_bits_re = (cc1.viterbi_decoder(coded_bits_re, decoder_type)).astype(int)
else:
s_refined = np.zeros(s_est.shape)
for k in range(len(s_est)):
if s_est[k] == 0.0:
s_refined[k] = 1e-16
elif s_est[k] == 1.0:
s_refined[k] = 1.0 - 1e-16
else:
s_refined[k] = s_est[k]
bits_llr = 10*np.log10(s_refined) - 10*np.log10(1-s_refined)
uncoded_bits_re = cc1.viterbi_decoder(bits_llr, decoder_type)
uncoded_bits_re = uncoded_bits_re.astype(int)
return uncoded_bits_re, coded_bits_re
init.run()
y_, s1_, s2_, s3_, _, _ = generate_data(block_size, noise_std, h[0])
print('\n==>Initial training with h[0] at SNR (dB): ', EbNodB[ii])
train_sess(epochs, y_, s3_, optimizer_ini, "Initial train loss:")
for jj in range(num_blocks):
y_, _, _, _, uncoded_bits3, coded_bits3 = generate_data(block_size, noise_std, h[jj])
uncoded_bits_re3, coded_bits_re3 = recover_bits(y_, p3, decoder_type)
s3_ = generate_online_label(uncoded_bits_re3)
online_training = True
if online_training:
print('\n-----------> Online training with block: ', jj, )
train_sess(10, y_[0:len(s3_)], s3_, optimizer_onl, "Online train loss:")
re_detect = True
if re_detect:
uncoded_bits_re3, coded_bits_re3 = recover_bits(y_, p3, decoder_type)
uncoded_bit_count, errors_uncoded = dc.bit_errors(coded_bits3, coded_bits_re3)
coded_bit_count, errors_coded = dc.bit_errors(uncoded_bits3, uncoded_bits_re3)
num_errors_uncoded = num_errors_uncoded + errors_uncoded
num_errors_coded = num_errors_coded + errors_coded
ber_uncoded[ii] = num_errors_uncoded / num_blocks / uncoded_bit_count
ber_coded[ii] = num_errors_coded / num_blocks / coded_bit_count
print('Coded BER online: ', np.round(ber_coded, 6))
print('Uncoded BER online: ', np.round(ber_uncoded, 6))
np.reshape(ber_coded, (len(ber_uncoded),))
np.reshape(ber_uncoded, (len(ber_uncoded),))
EbNodB_coded = list(np.asarray(EbNodB)-10*np.log10(code_rate))
plt.plot(EbNodB_coded, ber_coded,'-r+',label='coded bits')
plt.plot(EbNodB, ber_uncoded,'-bo',label='Uncoded bits')
plt.yscale('log')
plt.xlabel('EbNo (dB)')
plt.ylabel('BER')
plt.title('NOMA 3 users under block-fading channel')
plt.grid()
fig = plt.gcf()
# fig.set_size_inches(16,12)
# fig.savefig('graph/0501/rayleighBLER2.png',dpi=100)
plt.show()