-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_semantic.py
346 lines (316 loc) · 12.1 KB
/
train_semantic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import argparse
import json
import os
import pickle as pkl
import pprint
import time
import numpy as np
import torch
import torch.nn as nn
import torch.utils.data as data
import torchnet as tnt
from PIL import Image
from src import utils
from src import model_utils
from src.dataset import SITS_Dataset
from src.learning.metrics import confusion_matrix_analysis
from src.learning.miou import IoU
from src.learning.weight_init import weight_init
parser = argparse.ArgumentParser()
parser.add_argument(
"--model",
default='stenn',
type=str,
help="指定网络:utae, unet3d, convlstm, convgru, buconvlstm, uconvlstm, vgg, stenn, stenn_nodense, stenn_notransformer",
)
parser.add_argument(
"--dataset_folder",
default="/root/autodl-tmp/PASTIS",
type=str,
help="卫星影像时间序列数据集的存放路径"
)
parser.add_argument(
"--result_folder",
default="./train_result",
type=str,
help="训练结果的保存路径"
)
parser.add_argument(
"--rdm_seed",
default=1,
type=int,
help="随机种子"
)
parser.add_argument(
"--device",
default="cuda",
type=str,
help="指定训练平台:cuda/cpu"
)
parser.add_argument(
"--display_step",
default=50,
type=int,
help="打印训练指标的批次间隔",
)
parser.add_argument(
"--val_every",
default=5,
type=int,
help="验证的迭代间隔",
)
parser.add_argument(
"--val_after",
default=0,
type=int,
help="指定迭代多少次后才进行验证",
)
parser.add_argument("--epochs", default=100, type=int, help="迭代次数")
parser.add_argument("--batch_size", default=1, type=int, help="批次大小")
parser.add_argument("--lr", default=0.001, type=float, help="学习率")
parser.add_argument("--num_classes", default=20, type=int, help="类别数量")
parser.add_argument("--ignore_index", default=-1, type=int, help="忽略类别")
parser.add_argument("--input_channel", default=10, type=int, help="影像通道数")
parser.add_argument("--fold", default=1, type=int, help="指定训练、验证和测试的分组(1~5)")
parser.add_argument("--pad_value", default=0, type=float, help="时间序列长度不一时,padding的值")
# 通过递归将数据加载到指定设备上
def recursive_todevice(x, device):
if isinstance(x, torch.Tensor):
return x.to(device)
elif isinstance(x, dict):
return {k: recursive_todevice(v, device) for k, v in x.items()}
else:
return [recursive_todevice(v, device) for v in x]
def save_test_results(out, patch_ID, config):
result = torch.softmax(out, dim=1)
result = torch.argmax(result, 1)
for i in range(result.shape[0]):
obj = result[i].to('cpu', torch.uint8).numpy()
im = Image.fromarray(obj)
im.save(os.path.join(config.res_dir, config.model, "Test", "{}.png".format(patch_ID[i])))
def iterate(model, data_loader, criterion, config, device=None, mode="train", optimizer=None, test=False):
loss_meter = tnt.meter.AverageValueMeter()
iou_meter = IoU( # 语义分割评估指标,计算每个类的IoU和平均IoU
num_classes=config.num_classes,
ignore_index=config.ignore_index,
cm_device=config.device,
)
start_time = time.time()
for i, batch in enumerate(data_loader):
if device is not None:
batch = recursive_todevice(batch, device)
(data, dates), target, patch_ID = batch
target = target.long()
if mode == "train":
optimizer.zero_grad() # 清空梯度
out = model(data, batch_positions=dates)
else:
with torch.no_grad(): # 将模型的所有参数的requires_grad设置为False
out = model(data, batch_positions=dates)
if test: save_test_results(out, patch_ID, config)
loss = criterion(out, target)
if mode == "train":
loss.backward() # 反向传播,计算梯度
optimizer.step() # 更新网络参数
with torch.no_grad():
pred = out.argmax(dim=1)
iou_meter.add(pred, target)
loss_meter.add(loss.item())
if (i + 1) % config.display_step == 0:
miou, acc = iou_meter.get_miou_acc()
print(
"Step [{}/{}], Loss: {:.4f}, Acc: {:.2f}, mIoU: {:.2f}".format(
i + 1, len(data_loader), loss_meter.value()[0], acc, miou
)
)
end_time = time.time()
total_time = end_time - start_time
print("Epoch time:{:.1f}".format(total_time))
miou, acc = iou_meter.get_miou_acc()
metrics = {
"{}_accuracy".format(mode): acc,
"{}_loss".format(mode): loss_meter.value()[0],
"{}_IoU".format(mode): miou,
"{}_epoch_time".format(mode): total_time,
}
if mode == "test":
return metrics, iou_meter.conf_metric.value() # confusion matrix
else:
return metrics
# 创建保存结果的文件夹
def prepare_output(config):
os.makedirs(config.result_folder, exist_ok=True)
for fold in range(1, 6):
os.makedirs(os.path.join(config.result_folder, "Fold_{}".format(fold)), exist_ok=True)
# 记录训练日志
def checkpoint(fold, log, config):
with open(
os.path.join(config.result_folder, "Fold_{}".format(fold), "trainlog.json"), "w"
) as outfile:
json.dump(log, outfile, indent=4)
# 保存训练参数
def save_results(fold, metrics, conf_mat, config):
with open(
os.path.join(config.result_folder, "Fold_{}".format(fold), "test_metrics.json"), "w"
) as outfile:
json.dump(metrics, outfile, indent=4)
pkl.dump(
conf_mat,
open(
os.path.join(config.result_folder, "Fold_{}".format(fold), "conf_mat.pkl"), "wb"
),
)
# 整体性能评估
def overall_performance(config):
cm = np.zeros((config.num_classes, config.num_classes))
for fold in range(1, 6):
cm += pkl.load(
open(
os.path.join(config.result_folder, "Fold_{}".format(fold), "conf_mat.pkl"),
"rb",
)
)
if config.ignore_index is not None:
cm = np.delete(cm, config.ignore_index, axis=0)
cm = np.delete(cm, config.ignore_index, axis=1)
_, perf = confusion_matrix_analysis(cm)
print("Overall performance:")
print("Acc: {}, IoU: {}".format(perf["Accuracy"], perf["MACRO_IoU"]))
with open(os.path.join(config.result_folder, "overall.json"), "w") as file:
file.write(json.dumps(perf, indent=4))
def main(config):
fold_sequence = [
[[1, 2, 3], [4], [5]],
[[2, 3, 4], [5], [1]],
[[3, 4, 5], [1], [2]],
[[4, 5, 1], [2], [3]],
[[5, 1, 2], [3], [4]],
]
prepare_output(config)
np.random.seed(config.rdm_seed)
torch.manual_seed(config.rdm_seed)
device = torch.device(config.device)
fold_sequence = ( # 若未指定分组,则进行五组训练
fold_sequence if config.fold is None else [fold_sequence[config.fold - 1]]
)
for fold, (train_folds, val_folds, test_folds) in enumerate(fold_sequence):
if config.fold is not None:
fold = config.fold - 1
train_dataset = SITS_Dataset(config.dataset_folder, folds=train_folds)
val_dataset = SITS_Dataset(config.dataset_folder, folds=val_folds)
test_dataset = SITS_Dataset(config.dataset_folder, folds=test_folds)
collate_fn = lambda x: utils.pad_collate(x, pad_value=config.pad_value) # 重写对Batch数据的堆叠方式
train_loader = data.DataLoader(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True,
collate_fn=collate_fn,
)
val_loader = data.DataLoader(
val_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True,
collate_fn=collate_fn,
)
test_loader = data.DataLoader(
test_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True,
collate_fn=collate_fn,
)
print("Train {}, Val {}, Test {}".format(len(train_dataset), len(val_dataset), len(test_dataset)))
model = model_utils.get_model(config)
print(model)
config.N_params = utils.get_ntrainparams(model) # 获取模型中可训练的参数
print("TOTAL TRAINABLE PARAMETERS :", config.N_params)
with open(os.path.join(config.result_folder, "conf.json"), "w") as file: # 将参数写到JSON文件中
file.write(json.dumps(vars(config), indent=4))
model = model.to(device)
model_file = os.path.join(config.result_folder, "Fold_{}".format(fold + 1), "model.pth.tar")
if os.path.exists(model_file): # 初始化模型参数
model.load_state_dict(
torch.load(model_file, map_location=device)["state_dict"]
)
else:
model.apply(weight_init)
optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
weight = torch.ones(config.num_classes, device=device).float()
weight[config.ignore_index] = 0
criterion = nn.CrossEntropyLoss(weight=weight)
trainlog = {}
best_mIoU = 0 # 最佳交并比
for epoch in range(1, config.epochs + 1):
print("EPOCH {}/{}".format(epoch, config.epochs))
model.train()
train_metrics = iterate(
model,
data_loader=train_loader,
criterion=criterion,
config=config,
device=device,
optimizer=optimizer,
)
if epoch % config.val_every == 0 and epoch > config.val_after:
print("Validation . . . ")
model.eval()
val_metrics = iterate(
model,
data_loader=val_loader,
criterion=criterion,
config=config,
device=device,
optimizer=optimizer,
mode="val",
)
print(
"Loss {:.4f}, Acc {:.2f}, IoU {:.4f}".format(
val_metrics["val_loss"],
val_metrics["val_accuracy"],
val_metrics["val_IoU"],
)
)
trainlog[epoch] = {**train_metrics, **val_metrics}
checkpoint(fold + 1, trainlog, config)
if val_metrics["val_IoU"] >= best_mIoU:
best_mIoU = val_metrics["val_IoU"]
torch.save(
{
"epoch": epoch,
"state_dict": model.state_dict(),
"optimizer": optimizer.state_dict(),
},
model_file,
)
else:
trainlog[epoch] = {**train_metrics}
checkpoint(fold + 1, trainlog, config)
print("Testing best epoch . . .")
model.load_state_dict(
torch.load(model_file)["state_dict"]
)
model.eval()
test_metrics, conf_mat = iterate(
model,
data_loader=test_loader,
criterion=criterion,
config=config,
device=device,
optimizer=optimizer,
mode="test",
)
print(
"Loss {:.4f}, Acc {:.2f}, IoU {:.4f}".format(
test_metrics["test_loss"],
test_metrics["test_accuracy"],
test_metrics["test_IoU"],
)
)
save_results(fold + 1, test_metrics, conf_mat.cpu().numpy(), config)
if __name__ == "__main__":
config = parser.parse_args()
print(config)
main(config)
os.system("/usr/bin/shutdown")