-
Notifications
You must be signed in to change notification settings - Fork 12
/
B2D_vad_dataset.py
1037 lines (924 loc) · 45 KB
/
B2D_vad_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import copy
import numpy as np
import os
from os import path as osp
import torch
import random
import json, pickle
import tempfile
import cv2
import pyquaternion
from pyquaternion import Quaternion
import mmcv
from mmcv.datasets import DATASETS
from mmcv.utils import save_tensor
from mmcv.parallel import DataContainer as DC
from mmcv.core.bbox.structures.lidar_box3d import LiDARInstance3DBoxes
from mmcv.fileio.io import load, dump
from mmcv.utils import track_iter_progress, mkdir_or_exist
from mmcv.datasets.pipelines import to_tensor
from .custom_3d import Custom3DDataset
from .pipelines import Compose
from mmcv.datasets.map_utils.struct import LiDARInstanceLines
from shapely.geometry import LineString
from nuscenes.eval.common.utils import quaternion_yaw, Quaternion
from .vad_custom_nuscenes_eval import NuScenesEval_custom
from nuscenes.eval.common.utils import center_distance
import random
from nuscenes.utils.data_classes import Box as NuScenesBox
from mmcv.core.bbox.structures.nuscenes_box import CustomNuscenesBox
from shapely import affinity, ops
from shapely.geometry import LineString, box, MultiPolygon, MultiLineString
from nuscenes.map_expansion.map_api import NuScenesMap, NuScenesMapExplorer
from nuscenes.eval.detection.constants import DETECTION_NAMES
from mmcv.datasets.map_utils.mean_ap import eval_map
from mmcv.datasets.map_utils.mean_ap import format_res_gt_by_classes
from .nuscenes_styled_eval_utils import DetectionMetrics, EvalBoxes, DetectionBox,center_distance,accumulate,DetectionMetricDataList,calc_ap, calc_tp, quaternion_yaw
@DATASETS.register_module()
class B2D_VAD_Dataset(Custom3DDataset):
def __init__(self, queue_length=4, bev_size=(200, 200),overlap_test=False,with_velocity=True,sample_interval=5,name_mapping= None,eval_cfg = None, map_root =None,map_file=None,past_frames=2, future_frames=6,point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0] ,polyline_points_num=20,*args, **kwargs):
super().__init__(*args, **kwargs)
self.queue_length = queue_length
self.bev_size = bev_size
self.overlap_test = overlap_test
self.with_velocity = with_velocity
self.NameMapping = name_mapping
self.eval_cfg = eval_cfg
self.sample_interval = sample_interval
self.past_frames = past_frames
self.future_frames = future_frames
self.map_root = map_root
self.map_file = map_file
self.point_cloud_range = np.array(point_cloud_range)
self.polyline_points_num = polyline_points_num
self.map_element_class = {'Broken':0, 'Solid':1, 'SolidSolid':2,'Center':3,'TrafficLight':4,'StopSign':5}
self.MAPCLASSES = list(self.map_element_class.keys())
self.NUM_MAPCLASSES = len(self.MAPCLASSES)
self.map_eval_use_same_gt_sample_num_flag = True
self.map_ann_file = 'data/infos'
self.eval_cfg = eval_cfg
with open(self.map_file,'rb') as f:
self.map_infos = pickle.load(f)
def invert_pose(self, pose):
inv_pose = np.eye(4)
inv_pose[:3, :3] = np.transpose(pose[:3, :3])
inv_pose[:3, -1] = - inv_pose[:3, :3] @ pose[:3, -1]
return inv_pose
def prepare_train_data(self, index):
"""
Training data preparation.
Args:
index (int): Index for accessing the target data.
Returns:
dict: Training data dict of the corresponding index.
"""
queue = []
index_list = list(range(index-self.queue_length*self.sample_interval, index,self.sample_interval))
random.shuffle(index_list)
index_list = sorted(index_list[1:])
index_list.append(index)
for i in index_list:
i = max(0, i)
input_dict = self.get_data_info(i)
if input_dict is None:
return None
self.pre_pipeline(input_dict)
example = self.pipeline(input_dict)
gt_labels,gt_bboxes = self.get_map_info(index)
example['map_gt_labels_3d'] = DC(gt_labels, cpu_only=False)
example['map_gt_bboxes_3d'] = DC(gt_bboxes, cpu_only=True)
if self.filter_empty_gt and \
(example is None or ~(example['gt_labels_3d']._data != -1).any()):
return None
queue.append(example)
return self.union2one(queue)
def union2one(self, queue):
imgs_list = [each['img'].data for each in queue]
metas_map = {}
prev_scene_token = None
prev_pos = None
prev_angle = None
for i, each in enumerate(queue):
metas_map[i] = each['img_metas'].data
if metas_map[i]['folder'] != prev_scene_token:
metas_map[i]['prev_bev_exists'] = False
prev_scene_token = metas_map[i]['folder']
prev_pos = copy.deepcopy(metas_map[i]['can_bus'][:3])
prev_angle = copy.deepcopy(metas_map[i]['can_bus'][-1])
metas_map[i]['can_bus'][:3] = 0
metas_map[i]['can_bus'][-1] = 0
else:
metas_map[i]['prev_bev_exists'] = True
tmp_pos = copy.deepcopy(metas_map[i]['can_bus'][:3])
tmp_angle = copy.deepcopy(metas_map[i]['can_bus'][-1])
metas_map[i]['can_bus'][:3] -= prev_pos
metas_map[i]['can_bus'][-1] -= prev_angle
prev_pos = copy.deepcopy(tmp_pos)
prev_angle = copy.deepcopy(tmp_angle)
queue[-1]['img'] = DC(torch.stack(imgs_list), cpu_only=False, stack=True)
queue[-1]['img_metas'] = DC(metas_map, cpu_only=True)
queue = queue[-1]
return queue
def get_data_info(self, index):
"""Get data info according to the given index.
Args:
index (int): Index of the sample data to get.
Returns:
dict: Data information that will be passed to the data \
preprocessing pipelines. It includes the following keys:
- sample_idx (str): Sample index.
- pts_filename (str): Filename of point clouds.
- sweeps (list[dict]): Infos of sweeps.
- timestamp (float): Sample timestamp.
- img_filename (str, optional): Image filename.
- lidar2img (list[np.ndarray], optional): Transformations \
from lidar to different cameras.
- ann_info (dict): Annotation info.
"""
info = self.data_infos[index]
for i in range(len(info['gt_names'])):
if info['gt_names'][i] in self.NameMapping.keys():
info['gt_names'][i] = self.NameMapping[info['gt_names'][i]]
input_dict = dict(
folder=info['folder'],
scene_token=info['folder'],
frame_idx=info['frame_idx'],
ego_yaw=np.nan_to_num(info['ego_yaw'],nan=np.pi/2),
ego_translation=info['ego_translation'],
sensors=info['sensors'],
world2lidar=info['sensors']['LIDAR_TOP']['world2lidar'],
gt_ids=info['gt_ids'],
gt_boxes=info['gt_boxes'],
gt_names=info['gt_names'],
ego_vel = info['ego_vel'],
ego_accel = info['ego_accel'],
ego_rotation_rate = info['ego_rotation_rate'],
npc2world = info['npc2world'],
timestamp=info['frame_idx']/10
)
if self.modality['use_camera']:
image_paths = []
lidar2img_rts = []
lidar2cam_rts = []
cam_intrinsics = []
lidar2ego = info['sensors']['LIDAR_TOP']['lidar2ego']
lidar2global = self.invert_pose(info['sensors']['LIDAR_TOP']['world2lidar'])
for sensor_type, cam_info in info['sensors'].items():
if not 'CAM' in sensor_type:
continue
image_paths.append(osp.join(self.data_root,cam_info['data_path']))
# obtain lidar to image transformation matrix
cam2ego = cam_info['cam2ego']
intrinsic = cam_info['intrinsic']
intrinsic_pad = np.eye(4)
intrinsic_pad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
lidar2cam = self.invert_pose(cam2ego) @ lidar2ego
lidar2img = intrinsic_pad @ lidar2cam
lidar2img_rts.append(lidar2img)
cam_intrinsics.append(intrinsic_pad)
lidar2cam_rts.append(lidar2cam)
input_dict.update(
dict(
img_filename=image_paths,
lidar2img=lidar2img_rts,
cam_intrinsic=cam_intrinsics,
lidar2cam=lidar2cam_rts,
l2g_r_mat=lidar2global[0:3,0:3],
l2g_t=lidar2global[0:3,3]
))
#if not self.test_mode:
annos = self.get_ann_info(index)
input_dict['ann_info'] = annos
yaw = input_dict['ego_yaw']
rotation = list(Quaternion(axis=[0, 0, 1], radians=yaw))
if yaw < 0:
yaw += 2*np.pi
yaw_in_degree = yaw / np.pi * 180
can_bus = np.zeros(18)
can_bus[:3] = input_dict['ego_translation']
can_bus[3:7] = rotation
can_bus[7:10] = input_dict['ego_vel']
can_bus[10:13] = input_dict['ego_accel']
can_bus[13:16] = input_dict['ego_rotation_rate']
can_bus[16] = yaw
can_bus[17] = yaw_in_degree
input_dict['can_bus'] = can_bus
ego_lcf_feat = np.zeros(9)
ego_lcf_feat[0:2] = input_dict['ego_translation'][0:2]
ego_lcf_feat[2:4] = input_dict['ego_accel'][2:4]
ego_lcf_feat[4] = input_dict['ego_rotation_rate'][-1]
ego_lcf_feat[5] = info['ego_size'][1]
ego_lcf_feat[6] = info['ego_size'][0]
ego_lcf_feat[7] = np.sqrt(input_dict['ego_translation'][0]**2+input_dict['ego_translation'][1]**2)
ego_lcf_feat[8] = info['steer']
ego_his_trajs, ego_fut_trajs, ego_fut_masks, command = self.get_ego_trajs(index,self.sample_interval,self.past_frames,self.future_frames)
input_dict['ego_his_trajs'] = ego_his_trajs
input_dict['ego_fut_trajs'] = ego_fut_trajs
input_dict['ego_fut_masks'] = ego_fut_masks
input_dict['ego_fut_cmd'] = command
input_dict['ego_lcf_feat'] = ego_lcf_feat
input_dict['fut_valid_flag'] = (ego_fut_masks==1).all()
return input_dict
def get_map_info(self, index):
gt_masks = []
gt_labels = []
gt_bboxes = []
ann_info = self.data_infos[index]
town_name = ann_info['town_name']
map_info = self.map_infos[town_name]
lane_points = map_info['lane_points']
lane_sample_points = map_info['lane_sample_points']
lane_types = map_info['lane_types']
trigger_volumes_points = map_info['trigger_volumes_points']
trigger_volumes_sample_points = map_info['trigger_volumes_sample_points']
trigger_volumes_types = map_info['trigger_volumes_types']
world2lidar = np.array(ann_info['sensors']['LIDAR_TOP']['world2lidar'])
ego_xy = np.linalg.inv(world2lidar)[0:2,3]
max_distance = 50
chosed_idx = []
for idx in range(len(lane_sample_points)):
single_sample_points = lane_sample_points[idx]
distance = np.linalg.norm((single_sample_points[:,0:2]-ego_xy),axis=-1)
if np.min(distance) < max_distance:
chosed_idx.append(idx)
polylines = []
for idx in chosed_idx:
if not lane_types[idx] in self.map_element_class.keys():
continue
points = lane_points[idx]
points = np.concatenate([points,np.ones((points.shape[0],1))],axis=-1)
points_in_lidar = (world2lidar @ points.T).T
mask = (points_in_lidar[:,0]>self.point_cloud_range[0]) & (points_in_lidar[:,0]<self.point_cloud_range[3]) & (points_in_lidar[:,1]>self.point_cloud_range[1]) & (points_in_lidar[:,1]<self.point_cloud_range[4])
points_in_lidar_range = points_in_lidar[mask,0:2]
if len(points_in_lidar_range) > 1:
polylines.append(LineString(points_in_lidar_range))
gt_label = self.map_element_class[lane_types[idx]]
gt_labels.append(gt_label)
for idx in range(len(trigger_volumes_points)):
if not trigger_volumes_types[idx] in self.map_element_class.keys():
continue
points = trigger_volumes_points[idx]
points = np.concatenate([points,np.ones((points.shape[0],1))],axis=-1)
points_in_lidar = (world2lidar @ points.T).T
mask = (points_in_lidar[:,0]>self.point_cloud_range[0]) & (points_in_lidar[:,0]<self.point_cloud_range[3]) & (points_in_lidar[:,1]>self.point_cloud_range[1]) & (points_in_lidar[:,1]<self.point_cloud_range[4])
points_in_lidar_range = points_in_lidar[mask,0:2]
if mask.all():
polylines.append(LineString(np.concatenate((points_in_lidar_range,points_in_lidar_range[0:1]),axis=0)))
gt_label = self.map_element_class[trigger_volumes_types[idx]]
gt_labels.append(gt_label)
gt_labels = torch.tensor(gt_labels)
gt_bboxes = LiDARInstanceLines(polylines,fixed_num=self.polyline_points_num,patch_size=(self.point_cloud_range[4]-self.point_cloud_range[1],self.point_cloud_range[3]-self.point_cloud_range[0]))
return gt_labels,gt_bboxes
def get_ann_info(self, index):
"""Get annotation info according to the given index.
Args:
index (int): Index of the annotation data to get.
Returns:
dict: Annotation information consists of the following keys:
- gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`): \
3D ground truth bboxes
- gt_labels_3d (np.ndarray): Labels of ground truths.
- gt_names (list[str]): Class names of ground truths.
"""
info = self.data_infos[index]
# filter out bbox containing no points
for i in range(len(info['gt_names'])):
if info['gt_names'][i] in self.NameMapping.keys():
info['gt_names'][i] = self.NameMapping[info['gt_names'][i]]
mask = (info['num_points'] != 0)
gt_bboxes_3d = info['gt_boxes'][mask]
gt_names_3d = info['gt_names'][mask]
gt_inds = info['gt_ids']
gt_labels_3d = []
for cat in gt_names_3d:
if cat in self.CLASSES:
gt_labels_3d.append(self.CLASSES.index(cat))
else:
gt_labels_3d.append(-1)
gt_labels_3d = np.array(gt_labels_3d)
if not self.with_velocity:
gt_bboxes_3d = gt_bboxes_3d[:,0:7]
gt_bboxes_3d = LiDARInstance3DBoxes(
gt_bboxes_3d,
box_dim=gt_bboxes_3d.shape[-1],
origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)
attr_labels = self.get_box_attr_labels(index,self.sample_interval,self.future_frames)
anns_results = dict(
gt_bboxes_3d=gt_bboxes_3d,
gt_labels_3d=gt_labels_3d,
gt_names=gt_names_3d,
attr_labels=attr_labels[mask],
)
return anns_results
def __getitem__(self, idx):
"""Get item from infos according to the given index.
Returns:
dict: Data dictionary of the corresponding index.
"""
if self.test_mode:
return self.prepare_test_data(idx)
while True:
data = self.prepare_train_data(idx)
if data is None:
idx = self._rand_another(idx)
continue
return data
def get_ego_trajs(self,idx,sample_rate,past_frames,future_frames):
adj_idx_list = range(idx-past_frames*sample_rate,idx+(future_frames+1)*sample_rate,sample_rate)
cur_frame = self.data_infos[idx]
full_adj_track = np.zeros((past_frames+future_frames+1,2))
full_adj_adj_mask = np.zeros(past_frames+future_frames+1)
world2lidar_lidar_cur = cur_frame['sensors']['LIDAR_TOP']['world2lidar']
for j in range(len(adj_idx_list)):
adj_idx = adj_idx_list[j]
if adj_idx <0 or adj_idx>=len(self.data_infos):
break
adj_frame = self.data_infos[adj_idx]
if adj_frame['folder'] != cur_frame ['folder']:
break
world2lidar_ego_adj = adj_frame['sensors']['LIDAR_TOP']['world2lidar']
adj2cur_lidar = world2lidar_lidar_cur @ np.linalg.inv(world2lidar_ego_adj)
xy = adj2cur_lidar[0:2,3]
full_adj_track[j,0:2] = xy
full_adj_adj_mask[j] = 1
offset_track = full_adj_track[1:] - full_adj_track[:-1]
for j in range(past_frames-1,-1,-1):
if full_adj_adj_mask[j] == 0:
offset_track[j] = offset_track[j+1]
for j in range(past_frames,past_frames+future_frames,1):
if full_adj_adj_mask[j+1] == 0 :
offset_track[j] = 0
command = self.command2hot(cur_frame['command_near'])
return offset_track[:past_frames].copy(), offset_track[past_frames:].copy(), full_adj_adj_mask[-future_frames:].copy(), command
def command2hot(self,command,max_dim=6):
if command < 0:
command = 4
command -= 1
cmd_one_hot = np.zeros(max_dim)
cmd_one_hot[command] = 1
return cmd_one_hot
def get_box_attr_labels(self,idx,sample_rate,frames):
adj_idx_list = range(idx,idx+(frames+1)*sample_rate,sample_rate)
cur_frame = self.data_infos[idx]
cur_box_names = cur_frame['gt_names']
for i in range(len(cur_box_names)):
if cur_box_names[i] in self.NameMapping.keys():
cur_box_names[i] = self.NameMapping[cur_box_names[i]]
cur_boxes = cur_frame['gt_boxes'].copy()
box_ids = cur_frame['gt_ids']
future_track = np.zeros((len(box_ids),frames+1,2))
future_mask = np.zeros((len(box_ids),frames+1))
future_yaw = np.zeros((len(box_ids),frames+1))
gt_fut_goal = np.zeros((len(box_ids),1))
agent_lcf_feat = np.zeros((len(box_ids),9))
world2lidar_lidar_cur = cur_frame['sensors']['LIDAR_TOP']['world2lidar']
for i in range(len(box_ids)):
agent_lcf_feat[i,0:2] = cur_boxes[i,0:2]
agent_lcf_feat[i,2] = cur_boxes[i,6]
agent_lcf_feat[i,3:5] = cur_boxes[i,7:]
agent_lcf_feat[i,5:8] = cur_boxes[i,3:6]
cur_box_name = cur_box_names[i]
if cur_box_name in self.CLASSES:
agent_lcf_feat[i, 8] = self.CLASSES.index(cur_box_name)
else:
agent_lcf_feat[i, 8] = -1
box_id = box_ids[i]
cur_box2lidar = world2lidar_lidar_cur @ cur_frame['npc2world'][i]
cur_xy = cur_box2lidar[0:2,3]
for j in range(len(adj_idx_list)):
adj_idx = adj_idx_list[j]
if adj_idx <0 or adj_idx>=len(self.data_infos):
break
adj_frame = self.data_infos[adj_idx]
if adj_frame['folder'] != cur_frame ['folder']:
break
if len(np.where(adj_frame['gt_ids']==box_id)[0])==0:
continue
assert len(np.where(adj_frame['gt_ids']==box_id)[0]) == 1 , np.where(adj_frame['gt_ids']==box_id)[0]
adj_idx = np.where(adj_frame['gt_ids']==box_id)[0][0]
adj_box2lidar = world2lidar_lidar_cur @ adj_frame['npc2world'][adj_idx]
adj_xy = adj_box2lidar[0:2,3]
future_track[i,j,:] = adj_xy
future_mask[i,j] = 1
future_yaw[i,j] = np.arctan2(adj_box2lidar[1,0],adj_box2lidar[0,0])
coord_diff = future_track[i,-1] - future_track[i,0]
if coord_diff.max() < 1.0: # static
gt_fut_goal[i] = 9
else:
box_mot_yaw = np.arctan2(coord_diff[1], coord_diff[0]) + np.pi
gt_fut_goal[i] = box_mot_yaw // (np.pi / 4) # 0-8: goal direction class
future_track_offset = future_track[:,1:,:] - future_track[:,:-1,:]
future_mask_offset = future_mask[:,1:]
future_track_offset[future_mask_offset==0] = 0
future_yaw_offset = future_yaw[:,1:] - future_yaw[:,:-1]
mask1 = np.where(future_yaw_offset>np.pi)
mask2 = np.where(future_yaw_offset<-np.pi)
future_yaw_offset[mask1] -=np.pi*2
future_yaw_offset[mask2] +=np.pi*2
attr_labels = np.concatenate([future_track_offset.reshape(-1,frames*2), future_mask_offset, gt_fut_goal, agent_lcf_feat, future_yaw_offset],axis=-1).astype(np.float32)
return attr_labels.copy()
def load_gt(self):
all_annotations = EvalBoxes()
for i in range(len(self.data_infos)):
sample_boxes = []
sample_data = self.data_infos[i]
gt_boxes = sample_data['gt_boxes']
for j in range(gt_boxes.shape[0]):
class_name = self.NameMapping[sample_data['gt_names'][j]]
if not class_name in self.eval_cfg['class_range'].keys():
continue
range_x, range_y = self.eval_cfg['class_range'][class_name]
if abs(gt_boxes[j,0]) > range_x or abs(gt_boxes[j,1]) > range_y:
continue
sample_boxes.append(DetectionBox(
sample_token=sample_data['folder']+'_'+str(sample_data['frame_idx']),
translation=gt_boxes[j,0:3],
size=gt_boxes[j,3:6],
rotation=list(Quaternion(axis=[0, 0, 1], radians=-gt_boxes[j,6]-np.pi/2)),
velocity=gt_boxes[j,7:9],
num_pts=int(sample_data['num_points'][j]),
detection_name=class_name,
detection_score=-1.0,
attribute_name=class_name
))
all_annotations.add_boxes(sample_data['folder']+'_'+str(sample_data['frame_idx']), sample_boxes)
return all_annotations
def _format_gt(self):
gt_annos = []
print('Start to convert gt map format...')
# assert self.map_ann_file is not None
if (not os.path.exists(self.map_ann_file)) :
dataset_length = len(self)
prog_bar = mmcv.ProgressBar(dataset_length)
mapped_class_names = self.MAPCLASSES
for sample_id in range(dataset_length):
sample_token = self.data_infos[sample_id]['folder'] + '_' + str(self.data_infos[sample_id]['frame_idx'])
gt_anno = {}
gt_anno['sample_token'] = sample_token
# gt_sample_annos = []
gt_sample_dict = {}
gt_labels , gt_bboxes = self.get_map_info(sample_id)
gt_vecs = gt_bboxes.instance_list
gt_vec_list = []
for i, (gt_label, gt_vec) in enumerate(zip(gt_labels, gt_vecs)):
name = mapped_class_names[gt_label]
anno = dict(
pts=np.array(list(gt_vec.coords)),
pts_num=len(list(gt_vec.coords)),
cls_name=name,
type=gt_label,
)
gt_vec_list.append(anno)
gt_anno['vectors']=gt_vec_list
gt_annos.append(gt_anno)
prog_bar.update()
nusc_submissions = {
'GTs': gt_annos
}
print('\n GT anns writes to', self.map_ann_file)
dump(nusc_submissions, self.map_ann_file)
else:
print(f'{self.map_ann_file} exist, not update')
def _format_bbox(self, results, jsonfile_prefix=None, score_thresh=0.2):
"""Convert the results to the standard format.
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str): The prefix of the output jsonfile.
You can specify the output directory/filename by
modifying the jsonfile_prefix. Default: None.
Returns:
str: Path of the output json file.
"""
nusc_annos = {}
det_mapped_class_names = self.CLASSES
# assert self.map_ann_file is not None
map_pred_annos = {}
map_mapped_class_names = self.MAPCLASSES
plan_annos = {}
print('Start to convert detection format...')
for sample_id, det in enumerate(track_iter_progress(results)):
#pdb.set_trace()
annos = []
box3d = det['boxes_3d']
scores = det['scores_3d']
labels = det['labels_3d']
box_gravity_center = box3d.gravity_center
box_dims = box3d.dims
box_yaw = box3d.yaw.numpy()
box_yaw = -box_yaw - np.pi / 2
sample_token = self.data_infos[sample_id]['folder'] + '_' + str(self.data_infos[sample_id]['frame_idx'])
for i in range(len(box3d)):
#import pdb;pdb.set_trace()
if scores[i] < score_thresh:
continue
quat = list(Quaternion(axis=[0, 0, 1], radians=box_yaw[i]))
velocity = [box3d.tensor[i, 7].item(),box3d.tensor[i, 8].item()]
name = det_mapped_class_names[labels[i]]
nusc_anno = dict(
sample_token=sample_token,
translation=box_gravity_center[i].tolist(),
size=box_dims[i].tolist(),
rotation=quat,
velocity=velocity,
detection_name=name,
detection_score=scores[i].item(),
attribute_name=name)
annos.append(nusc_anno)
nusc_annos[sample_token] = annos
map_pred_anno = {}
vecs = output_to_vecs(det)
sample_token = self.data_infos[sample_id]['folder'] + '_' + str(self.data_infos[sample_id]['frame_idx'])
map_pred_anno['sample_token'] = sample_token
pred_vec_list=[]
for i, vec in enumerate(vecs):
name = map_mapped_class_names[vec['label']]
anno = dict(
# sample_token=sample_token,
pts=vec['pts'],
pts_num=len(vec['pts']),
cls_name=name,
type=vec['label'],
confidence_level=vec['score'])
pred_vec_list.append(anno)
# annos.append(nusc_anno)
# nusc_annos[sample_token] = annos
map_pred_anno['vectors'] = pred_vec_list
map_pred_annos[sample_token] = map_pred_anno
# NOTE: Eval on map is VERY SLOW for the first time(about 3 hours) because load map ground trurh is slow.
# So we do not eval map by default.
# if not os.path.exists(self.map_ann_file):
# self._format_gt()
# else:
# print(f'{self.map_ann_file} exist, not update')
# with open(self.map_ann_file,'r') as f:
# GT_anns = json.load(f)
# gt_annos = GT_anns['GTs']
nusc_submissions = {
'meta': self.modality,
'results': nusc_annos,
'map_results': map_pred_annos,
'plan_results': plan_annos
# 'GTs': gt_annos
}
mmcv.mkdir_or_exist(jsonfile_prefix)
res_path = osp.join(jsonfile_prefix, 'results_nusc.json')
print('Results writes to', res_path)
dump(nusc_submissions, res_path)
return res_path
def format_results(self, results, jsonfile_prefix=None):
"""Format the results to json (standard format for COCO evaluation).
Args:
results (list[dict]): Testing results of the dataset.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: Returns (result_files, tmp_dir), where `result_files` is a \
dict containing the json filepaths, `tmp_dir` is the temporal \
directory created for saving json files when \
`jsonfile_prefix` is not specified.
"""
if isinstance(results, dict):
# print(f'results must be a list, but get dict, keys={results.keys()}')
# assert isinstance(results, list)
results = results['bbox_results']
assert isinstance(results, list)
# assert len(results) == len(self), (
# 'The length of results is not equal to the dataset len: {} != {}'.
# format(len(results), len(self)))
if jsonfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
jsonfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
# currently the output prediction results could be in two formats
# 1. list of dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...)
# 2. list of dict('pts_bbox' or 'img_bbox':
# dict('boxes_3d': ..., 'scores_3d': ..., 'labels_3d': ...))
# this is a workaround to enable evaluation of both formats on nuScenes
# refer to https://github.com/open-mmlab/mmdetection3d/issues/449
if not ('pts_bbox' in results[0] or 'img_bbox' in results[0]):
result_files = self._format_bbox(results, jsonfile_prefix)
else:
# should take the inner dict out of 'pts_bbox' or 'img_bbox' dict
result_files = dict()
for name in results[0]:
if name == 'metric_results':
continue
print(f'\nFormating bboxes of {name}')
results_ = [out[name] for out in results]
tmp_file_ = osp.join(jsonfile_prefix, name)
result_files.update(
{name: self._format_bbox(results_, tmp_file_)})
return result_files, tmp_dir
def _evaluate_single(self,
result_path,
logger=None,
metric='bbox',
map_metric='chamfer',
result_name='pts_bbox'):
"""Evaluation for a single model in nuScenes protocol.
Args:
result_path (str): Path of the result file.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
metric (str): Metric name used for evaluation. Default: 'bbox'.
result_name (str): Result name in the metric prefix.
Default: 'pts_bbox'.
Returns:
dict: Dictionary of evaluation details.
"""
detail = dict()
with open(result_path,'r') as f:
result_data = json.load(f)
pred_boxes = EvalBoxes.deserialize(result_data['results'], DetectionBox)
meta = result_data['meta']
gt_boxes = self.load_gt()
metric_data_list = DetectionMetricDataList()
for class_name in self.eval_cfg['class_names']:
for dist_th in self.eval_cfg['dist_ths']:
md = accumulate(gt_boxes, pred_boxes, class_name, center_distance, dist_th)
metric_data_list.set(class_name, dist_th, md)
metrics = DetectionMetrics(self.eval_cfg)
for class_name in self.eval_cfg['class_names']:
# Compute APs.
for dist_th in self.eval_cfg['dist_ths']:
metric_data = metric_data_list[(class_name, dist_th)]
ap = calc_ap(metric_data, self.eval_cfg['min_recall'], self.eval_cfg['min_precision'])
metrics.add_label_ap(class_name, dist_th, ap)
# Compute TP metrics.
for metric_name in self.eval_cfg['tp_metrics']:
metric_data = metric_data_list[(class_name, self.eval_cfg['dist_th_tp'])]
tp = calc_tp(metric_data, self.eval_cfg['min_recall'], metric_name)
metrics.add_label_tp(class_name, metric_name, tp)
metrics_summary = metrics.serialize()
metrics_summary['meta'] = meta.copy()
print('mAP: %.4f' % (metrics_summary['mean_ap']))
err_name_mapping = {
'trans_err': 'mATE',
'scale_err': 'mASE',
'orient_err': 'mAOE',
'vel_err': 'mAVE',
}
for tp_name, tp_val in metrics_summary['tp_errors'].items():
print('%s: %.4f' % (err_name_mapping[tp_name], tp_val))
print('NDS: %.4f' % (metrics_summary['nd_score']))
#print('Eval time: %.1fs' % metrics_summary['eval_time'])
# Print per-class metrics.
print()
print('Per-class results:')
print('Object Class\tAP\tATE\tASE\tAOE\tAVE')
class_aps = metrics_summary['mean_dist_aps']
class_tps = metrics_summary['label_tp_errors']
for class_name in class_aps.keys():
print('%s\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f'
% (class_name, class_aps[class_name],
class_tps[class_name]['trans_err'],
class_tps[class_name]['scale_err'],
class_tps[class_name]['orient_err'],
class_tps[class_name]['vel_err']))
detail = dict()
metric_prefix = 'bbox_NuScenes'
for name in self.eval_cfg['class_names']:
for k, v in metrics_summary['label_aps'][name].items():
val = float('{:.4f}'.format(v))
detail['{}/{}_AP_dist_{}'.format(metric_prefix, name, k)] = val
for k, v in metrics_summary['label_tp_errors'][name].items():
val = float('{:.4f}'.format(v))
detail['{}/{}_{}'.format(metric_prefix, name, k)] = val
for k, v in metrics_summary['tp_errors'].items():
val = float('{:.4f}'.format(v))
detail['{}/{}'.format(metric_prefix,self.eval_cfg['err_name_maping'][k])] = val
detail['{}/NDS'.format(metric_prefix)] = metrics_summary['nd_score']
detail['{}/mAP'.format(metric_prefix)] = metrics_summary['mean_ap']
# from mmcv.datasets.map_utils.mean_ap import eval_map
# from mmcv.datasets.map_utils.mean_ap import format_res_gt_by_classes
# result_path = osp.abspath(result_path)
# print('Formating results & gts by classes')
# pred_results = load(result_path)
# map_results = pred_results['map_results']
# gt_anns = load(self.map_ann_file)
# map_annotations = gt_anns['GTs']
# cls_gens, cls_gts = format_res_gt_by_classes(result_path,
# map_results,
# map_annotations,
# cls_names=self.MAPCLASSES,
# num_pred_pts_per_instance=self.polyline_points_num,
# eval_use_same_gt_sample_num_flag=self.map_eval_use_same_gt_sample_num_flag,
# pc_range=self.point_cloud_range)
# map_metrics = map_metric if isinstance(map_metric, list) else [map_metric]
# allowed_metrics = ['chamfer', 'iou']
# for metric in map_metrics:
# if metric not in allowed_metrics:
# raise KeyError(f'metric {metric} is not supported')
# for metric in map_metrics:
# print('-*'*10+f'use metric:{metric}'+'-*'*10)
# if metric == 'chamfer':
# thresholds = [0.5,1.0,1.5]
# elif metric == 'iou':
# thresholds= np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)
# cls_aps = np.zeros((len(thresholds),self.NUM_MAPCLASSES))
# for i, thr in enumerate(thresholds):
# print('-*'*10+f'threshhold:{thr}'+'-*'*10)
# mAP, cls_ap = eval_map(
# map_results,
# map_annotations,
# cls_gens,
# cls_gts,
# threshold=thr,
# cls_names=self.MAPCLASSES,
# logger=logger,
# num_pred_pts_per_instance=self.polyline_points_num,
# pc_range=self.point_cloud_range,
# metric=metric)
# for j in range(self.NUM_MAPCLASSES):
# cls_aps[i, j] = cls_ap[j]['ap']
# for i, name in enumerate(self.MAPCLASSES):
# print('{}: {}'.format(name, cls_aps.mean(0)[i]))
# detail['NuscMap_{}/{}_AP'.format(metric,name)] = cls_aps.mean(0)[i]
# print('map: {}'.format(cls_aps.mean(0).mean()))
# detail['NuscMap_{}/mAP'.format(metric)] = cls_aps.mean(0).mean()
# for i, name in enumerate(self.MAPCLASSES):
# for j, thr in enumerate(thresholds):
# if metric == 'chamfer':
# detail['NuscMap_{}/{}_AP_thr_{}'.format(metric,name,thr)]=cls_aps[j][i]
# elif metric == 'iou':
# if thr == 0.5 or thr == 0.75:
# detail['NuscMap_{}/{}_AP_thr_{}'.format(metric,name,thr)]=cls_aps[j][i]
return detail
def evaluate(self,
results,
metric='bbox',
map_metric='chamfer',
logger=None,
jsonfile_prefix=None,
result_names=['pts_bbox'],
show=False,
out_dir=None,
pipeline=None):
"""Evaluation in nuScenes protocol.
Args:
results (list[dict]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
jsonfile_prefix (str | None): The prefix of json files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
show (bool): Whether to visualize.
Default: False.
out_dir (str): Path to save the visualization results.
Default: None.
pipeline (list[dict], optional): raw data loading for showing.
Default: None.
Returns:
dict[str, float]: Results of each evaluation metric.
"""
result_metric_names = ['EPA', 'ADE', 'FDE', 'MR']
motion_cls_names = ['car', 'pedestrian']
motion_metric_names = ['gt', 'cnt_ade', 'cnt_fde', 'hit',
'fp', 'ADE', 'FDE', 'MR']
all_metric_dict = {}
for met in motion_metric_names:
for cls in motion_cls_names:
all_metric_dict[met+'_'+cls] = 0.0
result_dict = {}
for met in result_metric_names:
for cls in motion_cls_names:
result_dict[met+'_'+cls] = 0.0
alpha = 0.5
for i in range(len(results)):
for key in all_metric_dict.keys():
all_metric_dict[key] += results[i]['metric_results'][key]
for cls in motion_cls_names:
result_dict['EPA_'+cls] = (all_metric_dict['hit_'+cls] - \
alpha * all_metric_dict['fp_'+cls]) / all_metric_dict['gt_'+cls]
result_dict['ADE_'+cls] = all_metric_dict['ADE_'+cls] / all_metric_dict['cnt_ade_'+cls]
result_dict['FDE_'+cls] = all_metric_dict['FDE_'+cls] / all_metric_dict['cnt_fde_'+cls]
result_dict['MR_'+cls] = all_metric_dict['MR_'+cls] / all_metric_dict['cnt_fde_'+cls]
print('\n')
print('-------------- Motion Prediction --------------')
for k, v in result_dict.items():
print(f'{k}: {v}')
# NOTE: print planning metric
print('\n')
print('-------------- Planning --------------')
metric_dict = None
num_valid = 0
for res in results:
if res['metric_results']['fut_valid_flag']:
num_valid += 1
else:
continue
if metric_dict is None:
metric_dict = copy.deepcopy(res['metric_results'])
else:
for k in res['metric_results'].keys():
metric_dict[k] += res['metric_results'][k]
for k in metric_dict:
metric_dict[k] = metric_dict[k] / num_valid
print("{}:{}".format(k, metric_dict[k]))
result_files, tmp_dir = self.format_results(results, jsonfile_prefix)
if isinstance(result_files, dict):
results_dict = dict()
for name in result_names:
print('Evaluating bboxes of {}'.format(name))
ret_dict = self._evaluate_single(result_files[name], metric=metric, map_metric=map_metric)
results_dict.update(ret_dict)
elif isinstance(result_files, str):
results_dict = self._evaluate_single(result_files, metric=metric, map_metric=map_metric)
if tmp_dir is not None:
tmp_dir.cleanup()
if show:
self.show(results, out_dir, pipeline=pipeline)
return results_dict
def output_to_nusc_box(detection):
"""Convert the output to the box class in the nuScenes.
Args:
detection (dict): Detection results.
- boxes_3d (:obj:`BaseInstance3DBoxes`): Detection bbox.
- scores_3d (torch.Tensor): Detection scores.
- labels_3d (torch.Tensor): Predicted box labels.
Returns:
list[:obj:`NuScenesBox`]: List of standard NuScenesBoxes.
"""
box3d = detection['boxes_3d']
scores = detection['scores_3d'].numpy()
labels = detection['labels_3d'].numpy()
trajs = detection['trajs_3d'].numpy()
box_gravity_center = box3d.gravity_center.numpy()
box_dims = box3d.dims.numpy()
box_yaw = box3d.yaw.numpy()
# TODO: check whether this is necessary
# with dir_offset & dir_limit in the head
box_yaw = -box_yaw - np.pi / 2
box_list = []
for i in range(len(box3d)):
quat = pyquaternion.Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
velocity = (*box3d.tensor[i, 7:9], 0.0)
# velo_val = np.linalg.norm(box3d[i, 7:9])
# velo_ori = box3d[i, 6]
# velocity = (
# velo_val * np.cos(velo_ori), velo_val * np.sin(velo_ori), 0.0)
box = CustomNuscenesBox(
center=box_gravity_center[i],
size=box_dims[i],
orientation=quat,
fut_trajs=trajs[i],
label=labels[i],
score=scores[i],
velocity=velocity)
box_list.append(box)
return box_list
def lidar_nusc_box_to_global(info,
boxes,
classes,
eval_configs,
eval_version='detection_cvpr_2019'):
"""Convert the box from ego to global coordinate.
Args:
info (dict): Info for a specific sample data, including the
calibration information.
boxes (list[:obj:`NuScenesBox`]): List of predicted NuScenesBoxes.
classes (list[str]): Mapped classes in the evaluation.
eval_configs (object): Evaluation configuration object.
eval_version (str): Evaluation version.
Default: 'detection_cvpr_2019'
Returns:
list: List of standard NuScenesBoxes in the global
coordinate.