-
Notifications
You must be signed in to change notification settings - Fork 120
/
Copy pathmodel.py
127 lines (106 loc) · 5.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
from src.lap_solvers.sinkhorn import Sinkhorn
from src.feature_align import feature_align
from src.gconv import Siamese_ChannelIndependentConv #, Siamese_GconvEdgeDPP, Siamese_GconvEdgeOri
from models.PCA.affinity_layer import Affinity
from src.lap_solvers.hungarian import hungarian
from src.utils.config import cfg
from src.backbone import *
CNN = eval(cfg.BACKBONE)
class Net(CNN):
def __init__(self):
super(Net, self).__init__()
self.sinkhorn = Sinkhorn(max_iter=cfg.CIE.SK_ITER_NUM, epsilon=cfg.CIE.SK_EPSILON, tau=cfg.CIE.SK_TAU)
self.l2norm = nn.LocalResponseNorm(cfg.CIE.FEATURE_CHANNEL * 2, alpha=cfg.CIE.FEATURE_CHANNEL * 2, beta=0.5, k=0)
self.gnn_layer = cfg.CIE.GNN_LAYER # numbur of GNN layers
for i in range(self.gnn_layer):
if i == 0:
gnn_layer = Siamese_ChannelIndependentConv(cfg.CIE.FEATURE_CHANNEL * 2, cfg.CIE.GNN_FEAT, 1)
else:
gnn_layer = Siamese_ChannelIndependentConv(cfg.CIE.GNN_FEAT, cfg.CIE.GNN_FEAT, cfg.CIE.GNN_FEAT)
self.add_module('gnn_layer_{}'.format(i), gnn_layer)
self.add_module('affinity_{}'.format(i), Affinity(cfg.CIE.GNN_FEAT))
if i == self.gnn_layer - 2: # only second last layer will have cross-graph module
self.add_module('cross_graph_{}'.format(i), nn.Linear(cfg.CIE.GNN_FEAT * 2, cfg.CIE.GNN_FEAT))
self.add_module('cross_graph_edge_{}'.format(i), nn.Linear(cfg.CIE.GNN_FEAT * 2, cfg.CIE.GNN_FEAT))
self.rescale = cfg.PROBLEM.RESCALE
def forward(self, data_dict, **kwargs):
if 'images' in data_dict:
# real image data
src, tgt = data_dict['images']
P_src, P_tgt = data_dict['Ps']
ns_src, ns_tgt = data_dict['ns']
G_src, G_tgt = data_dict['Gs']
H_src, H_tgt = data_dict['Hs']
# extract feature
src_node = self.node_layers(src)
src_edge = self.edge_layers(src_node)
tgt_node = self.node_layers(tgt)
tgt_edge = self.edge_layers(tgt_node)
# feature normalization
src_node = self.l2norm(src_node)
src_edge = self.l2norm(src_edge)
tgt_node = self.l2norm(tgt_node)
tgt_edge = self.l2norm(tgt_edge)
# arrange features
U_src = feature_align(src_node, P_src, ns_src, self.rescale)
F_src = feature_align(src_edge, P_src, ns_src, self.rescale)
U_tgt = feature_align(tgt_node, P_tgt, ns_tgt, self.rescale)
F_tgt = feature_align(tgt_edge, P_tgt, ns_tgt, self.rescale)
elif 'features' in data_dict:
# synthetic data
src, tgt = data_dict['features']
ns_src, ns_tgt = data_dict['ns']
G_src, G_tgt = data_dict['Gs']
H_src, H_tgt = data_dict['Hs']
U_src = src[:, :src.shape[1] // 2, :]
F_src = src[:, src.shape[1] // 2:, :]
U_tgt = tgt[:, :tgt.shape[1] // 2, :]
F_tgt = tgt[:, tgt.shape[1] // 2:, :]
else:
raise ValueError('Unknown data type for this model.')
P_src_dis = (P_src.unsqueeze(1) - P_src.unsqueeze(2))
P_src_dis = torch.norm(P_src_dis, p=2, dim=3).detach()
P_tgt_dis = (P_tgt.unsqueeze(1) - P_tgt.unsqueeze(2))
P_tgt_dis = torch.norm(P_tgt_dis, p=2, dim=3).detach()
Q_src = torch.exp(-P_src_dis / self.rescale[0])
Q_tgt = torch.exp(-P_tgt_dis / self.rescale[0])
emb_edge1 = Q_src.unsqueeze(-1)
emb_edge2 = Q_tgt.unsqueeze(-1)
# adjacency matrices
A_src = torch.bmm(G_src, H_src.transpose(1, 2))
A_tgt = torch.bmm(G_tgt, H_tgt.transpose(1, 2))
# U_src, F_src are features at different scales
emb1, emb2 = torch.cat((U_src, F_src), dim=1).transpose(1, 2), torch.cat((U_tgt, F_tgt), dim=1).transpose(1, 2)
ss = []
for i in range(self.gnn_layer):
gnn_layer = getattr(self, 'gnn_layer_{}'.format(i))
# during forward process, the network structure will not change
emb1, emb2, emb_edge1, emb_edge2 = gnn_layer([A_src, emb1, emb_edge1], [A_tgt, emb2, emb_edge2])
affinity = getattr(self, 'affinity_{}'.format(i))
s = affinity(emb1, emb2) # xAx^T
s = self.sinkhorn(s, ns_src, ns_tgt)
ss.append(s)
if i == self.gnn_layer - 2:
cross_graph = getattr(self, 'cross_graph_{}'.format(i))
new_emb1 = cross_graph(torch.cat((emb1, torch.bmm(s, emb2)), dim=-1))
new_emb2 = cross_graph(torch.cat((emb2, torch.bmm(s.transpose(1, 2), emb1)), dim=-1))
emb1 = new_emb1
emb2 = new_emb2
# edge cross embedding
'''
cross_graph_edge = getattr(self, 'cross_graph_edge_{}'.format(i))
emb_edge1 = emb_edge1.permute(0, 3, 1, 2)
emb_edge2 = emb_edge2.permute(0, 3, 1, 2)
s = s.unsqueeze(1)
new_emb_edge1 = cross_graph_edge(torch.cat((emb_edge1, torch.matmul(torch.matmul(s, emb_edge2), s.transpose(2, 3))), dim=1).permute(0, 2, 3, 1))
new_emb_edge2 = cross_graph_edge(torch.cat((emb_edge2, torch.matmul(torch.matmul(s.transpose(2, 3), emb_edge1), s)), dim=1).permute(0, 2, 3, 1))
emb_edge1 = new_emb_edge1
emb_edge2 = new_emb_edge2
'''
data_dict.update({
'ds_mat': ss[-1],
'perm_mat': hungarian(ss[-1], ns_src, ns_tgt)
})
return data_dict