-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
141 lines (117 loc) · 4.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
'''Train CIFAR10 with PyTorch.'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
from model.resnet import *
from utils import progress_bar, kaiming_initialization
parser = argparse.ArgumentParser(description = 'PyTorch CIFAR10 Training')
parser.add_argument('--opt', default = 'adam', type = str, help = 'sgd or adam or adamw')
parser.add_argument('--scheduler', default = 'no', type = str, help = 'no or cos or step')
parser.add_argument('--lr', default = 0.0001, type = float, help = 'learning rate')
parser.add_argument('--batch_size', default = 2048, type = int, help = 'train batch size')
parser.add_argument('--ep', default = 200, type = int, help = 'epoch')
parser.add_argument('--wd', default = 5e-4, type = float, help = 'weight decay')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
trainset = torchvision.datasets.CIFAR10(root = './data', train = True, transform = transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size = args.batch_size, shuffle = True, num_workers = 2)
testset = torchvision.datasets.CIFAR10(root = './data', train = False, transform = transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size = 512, shuffle = False, num_workers = 2)
# Model
print('==> Building model..')
net = resnet32()
kaiming_initialization(net)
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss()
if args.opt == 'sgd':
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wd)
elif args.opt == 'adam':
optimizer = optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.wd)
elif args.opt == 'adamw':
optimizer = optim.AdamW(net.parameters(), lr=args.lr, weight_decay=args.wd)
else:
raise ValueError("Wrong optimizer!")
if args.scheduler == 'cos':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.ep)
elif args.scheduler == 'step':
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = 10, gamma = 0.8)
else:
scheduler = None
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.pth')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
for epoch in range(start_epoch, start_epoch + args.ep):
# Training
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Test
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
if acc > best_acc:
print(f'Save best model @ Epoch {epoch}')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.pth')
best_acc = acc