forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinfer.py
executable file
·112 lines (101 loc) · 3.62 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import fastdeploy as fd
import cv2
import os
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of RobustVideoMatting model.")
parser.add_argument("--image", type=str, help="Path of test image file.")
parser.add_argument("--video", type=str, help="Path of test video file.")
parser.add_argument(
"--bg",
type=str,
required=True,
default=None,
help="Path of test background image file.")
parser.add_argument(
'--output-composition',
type=str,
default="composition.mp4",
help="Path of composition video file.")
parser.add_argument(
'--output-alpha',
type=str,
default="alpha.mp4",
help="Path of alpha video file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("src", [1, 3, 1920, 1080])
option.set_trt_input_shape("r1i", [1, 1, 1, 1], [1, 16, 240, 135],
[1, 16, 240, 135])
option.set_trt_input_shape("r2i", [1, 1, 1, 1], [1, 20, 120, 68],
[1, 20, 120, 68])
option.set_trt_input_shape("r3i", [1, 1, 1, 1], [1, 40, 60, 34],
[1, 40, 60, 34])
option.set_trt_input_shape("r4i", [1, 1, 1, 1], [1, 64, 30, 17],
[1, 64, 30, 17])
return option
args = parse_arguments()
output_composition = args.output_composition
output_alpha = args.output_alpha
# 配置runtime,加载模型
runtime_option = build_option(args)
model = fd.vision.matting.RobustVideoMatting(
args.model, runtime_option=runtime_option)
bg = cv2.imread(args.bg)
if args.video is not None:
# for video
cap = cv2.VideoCapture(args.video)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
composition = cv2.VideoWriter(output_composition, fourcc, 20.0,
(1080, 1920))
alpha = cv2.VideoWriter(output_alpha, fourcc, 20.0, (1080, 1920))
frame_id = 0
while True:
frame_id = frame_id + 1
_, frame = cap.read()
if frame is None:
break
result = model.predict(frame)
vis_im = fd.vision.vis_matting(frame, result)
vis_im_with_bg = fd.vision.swap_background_matting(frame, bg, result)
alpha.write(vis_im)
composition.write(vis_im_with_bg)
cv2.waitKey(30)
cap.release()
composition.release()
alpha.release()
cv2.destroyAllWindows()
print("Visualized result video save in {} and {}".format(
output_composition, output_alpha))
if args.image is not None:
# for image
im = cv2.imread(args.image)
result = model.predict(im.copy())
print(result)
# 可视化结果
vis_im = fd.vision.vis_matting(im, result)
vis_im_with_bg = fd.vision.swap_background_matting(im, bg, result)
cv2.imwrite("visualized_result_fg.jpg", vis_im)
cv2.imwrite("visualized_result_replaced_bg.jpg", vis_im_with_bg)
print(
"Visualized result save in ./visualized_result_replaced_bg.jpg and ./visualized_result_fg.jpg"
)