-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
353 lines (299 loc) · 14.8 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import argparse
import os
import sys
import time
import torch
import cv2
import math
import numpy as np
import torch.backends.cudnn as cudnn
from torch.optim import Adam
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from torchnet import meter
import json
from tqdm import tqdm
from data import HSTrainingData
from data import HSTestData
from MSDformer import MSDformer
from common import *
from metrics import compare_mpsnr
# loss
from loss import HLoss
from metrics import quality_assessment
# global settings
resume = False
log_interval = 50
model_name = ''
test_data_dir = ''
def main():
# parsers
main_parser = argparse.ArgumentParser(description="parser for SR network")
subparsers = main_parser.add_subparsers(title="subcommands", dest="subcommand")
train_parser = subparsers.add_parser("train", help="parser for training arguments")
train_parser.add_argument("--cuda", type=int, required=False,default=1,
help="set it to 1 for running on GPU, 0 for CPU")
train_parser.add_argument("--batch_size", type=int, default=32, help="batch size, default set to 32")
train_parser.add_argument("--epochs", type=int, default=300, help="epochs, default set to 300")
train_parser.add_argument("--n_feats", type=int, default=240, help="n_feats, default set to 240")
train_parser.add_argument("--n_blocks", type=int, default=4, help="n_blocks, default set to 4")
train_parser.add_argument("--n_subs", type=int, default=8, help="n_subs, default set to 8")
train_parser.add_argument("--n_ovls", type=int, default=0, help="n_ovls, default set to 0")
train_parser.add_argument("--n_scale", type=int, default=4, help="n_scale, default set to 4")
train_parser.add_argument("--dataset_name", type=str, default="Chikusei", help="dataset_name, default set to dataset_name")
train_parser.add_argument("--model_title", type=str, default="MSDformer", help="model_title, default set to model_title")
train_parser.add_argument("--seed", type=int, default=3000, help="start seed for model")
train_parser.add_argument("--learning_rate", type=float, default=5e-5,
help="learning rate, default set to 1e-4")
train_parser.add_argument("--weight_decay", type=float, default=0, help="weight decay, default set to 0")
train_parser.add_argument("--gpus", type=str, default="1", help="gpu ids (default: 7)")
test_parser = subparsers.add_parser("test", help="parser for testing arguments")
test_parser.add_argument("--cuda", type=int, required=False,default=1,
help="set it to 1 for running on GPU, 0 for CPU")
test_parser.add_argument("--gpus", type=str, default="0,1", help="gpu ids (default: 7)")
test_parser.add_argument("--dataset_name", type=str, default="Chikusei",help="dataset_name, default set to dataset_name")
test_parser.add_argument("--model_title", type=str, default="MSDformer",help="model_title, default set to model_title")
test_parser.add_argument("--n_feats", type=int, default=240, help="n_feats, default set to 240")
test_parser.add_argument("--n_blocks", type=int, default=4, help="n_blocks, default set to 4")
test_parser.add_argument("--n_subs", type=int, default=8, help="n_subs, default set to 8")
test_parser.add_argument("--n_ovls", type=int, default=0, help="n_ovls, default set to 1")
test_parser.add_argument("--n_scale", type=int, default=4, help="n_scale, default set to 2")
args = main_parser.parse_args()
print('===>GPU:',args.gpus)
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus
if args.subcommand is None:
print("ERROR: specify either train or test")
sys.exit(1)
if args.cuda and not torch.cuda.is_available():
print("ERROR: cuda is not available, try running on CPU")
sys.exit(1)
if args.subcommand == "train":
train(args)
else:
test(args)
pass
def train(args):
traintime = str(time.ctime())
device = torch.device("cuda" if args.cuda else "cpu")
# args.seed = random.randint(1, 10000)
print("Start seed: ", args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
print('===> Loading datasets')
train_path = './datasets32/'+args.dataset_name+'_x'+str(args.n_scale)+'/trains/'
eval_path = './datasets32/' + args.dataset_name + '_x' + str(args.n_scale) + '/evals/'
test_data_dir = './datasets32/' + args.dataset_name + '_x' + str(args.n_scale) + '/' + args.dataset_name + '_test.mat'
train_set = HSTrainingData(image_dir=train_path, augment=True)
eval_set = HSTrainingData(image_dir=eval_path, augment=False)
train_loader = DataLoader(train_set, batch_size=args.batch_size, num_workers=8, shuffle=True)
eval_loader = DataLoader(eval_set, batch_size=args.batch_size, num_workers=4, shuffle=False)
test_set = HSTestData(test_data_dir)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
if args.dataset_name=='Cave':
colors = 31
elif args.dataset_name=='Pavia':
colors = 102
elif args.dataset_name=='Houston':
colors = 48
else:
colors = 128
print('===> Building model:{}'.format(args.model_title))
net = MSDformer(n_subs=args.n_subs, n_ovls=args.n_ovls, n_colors=colors, scale=args.n_scale, n_feats=args.n_feats, n_DCTM=args.n_blocks, conv=default_conv)
# print(net)
model_title = args.model_title +'_Blocks='+str(args.n_blocks)+'_Subs'+str(args.n_subs)+'_Ovls'+str(args.n_ovls)+'_Feats='+str(args.n_feats)
model_name = './checkpoints/' + "time" + args.dataset_name + model_title + "_ckpt_epoch_" + str() + ".pth"
args.model_title = model_title
start_epoch = 0
if resume:
if os.path.isfile(model_name):
print("=> loading checkpoint '{}'".format(model_name))
checkpoint = torch.load(model_name)
start_epoch = checkpoint["epoch"]
net.load_state_dict(checkpoint["model"])
else:
print("=> no checkpoint found at '{}'".format(model_name))
if torch.cuda.device_count() > 1:
print("===> Let's use", torch.cuda.device_count(), "GPUs.")
net = torch.nn.DataParallel(net)
net.to(device).train()
print_network(net)
h_loss = HLoss(0.5, 0.1)
L1_loss = torch.nn.L1Loss()
print("===> Setting optimizer and logger")
optimizer = Adam(net.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
epoch_meter = meter.AverageValueMeter()
writer = SummaryWriter('runs/'+model_title+'_'+traintime)
best_epoch = 0
best_loss = 0
print('===> Start training')
for e in range(start_epoch, args.epochs):
adjust_learning_rate(args.learning_rate, optimizer, e + 1)
epoch_meter.reset()
net.train()
print("Start epoch {}, learning rate = {}".format(e + 1, optimizer.param_groups[0]["lr"]))
for iteration, (x, lms, gt) in enumerate(tqdm(train_loader, leave=False)):
x, lms, gt = x.to(device), lms.to(device), gt.to(device)
optimizer.zero_grad()
y = net(x, lms)
loss = h_loss(y, gt)
epoch_meter.add(loss.item())
loss.backward()
# torch.nn.utils.clip_grad_norm(net.parameters(), clip_para)
optimizer.step()
# tensorboard visualization
if (iteration + log_interval) % log_interval == 0:
print("===> {} \tEpoch[{}]({}/{}): Loss: {:.6f}".format(time.ctime(), e + 1, iteration + 1,
len(train_loader)-1, loss.item()))
n_iter = e * len(train_loader) + iteration + 1
writer.add_scalar('scalar/train_loss', loss, n_iter)
# run validation set every epoch
eval_loss = validate(args, eval_loader, net, L1_loss)
if e == 0:
best_loss = eval_loss
else:
if eval_loss <= best_loss:
best_loss = eval_loss
best_epoch = e+1
print("===> {}\tEpoch evaluation Complete: Avg. Loss: {:.6f}, best_epoch: {}, best_loss: {:.6f}".format
(time.ctime(), eval_loss, best_epoch, best_loss))
# tensorboard visualization
writer.add_scalar('scalar/avg_epoch_loss', epoch_meter.value()[0], e + 1)
writer.add_scalar('scalar/avg_validation_loss', eval_loss, e + 1)
# save model weights at checkpoints every 5 epochs
if (e + 1) % 5 == 0:
save_checkpoint(args, net, e+1, traintime)
print("===> Start testing")
result_path = './results/' + args.dataset_name + '_x' + str(args.n_scale) + '/'
model_name = './checkpoints/' + traintime + '/' + args.dataset_name + '_' + model_title + "_ckpt_epoch_" + str(best_epoch) + ".pth"
with torch.no_grad():
test_number = 0
epoch_meter = meter.AverageValueMeter()
epoch_meter.reset()
# loading model
net = MSDformer(n_subs=args.n_subs, n_ovls=args.n_ovls, n_colors=colors, scale=args.n_scale,
n_feats=args.n_feats, n_DCTM=args.n_blocks, conv=default_conv)
state_dict = torch.load(model_name)
net.load_state_dict(state_dict['model'])
net.to(device).eval()
output = []
for i, (ms, lms, gt) in enumerate(test_loader):
# compute output
ms, lms, gt = ms.to(device), lms.to(device), gt.to(device)
y = net(ms, lms)
y, gt = y.squeeze().cpu().numpy().transpose(1, 2, 0), gt.squeeze().cpu().numpy().transpose(1, 2, 0)
y = y[:gt.shape[0],:gt.shape[1],:]
if i==0:
indices = quality_assessment(gt, y, data_range=1., ratio=4)
else:
indices = sum_dict(indices, quality_assessment(gt, y, data_range=1., ratio=4))
output.append(y)
test_number += 1
for index in indices:
indices[index] = indices[index] / test_number
save_dir = result_path + model_title + '.npy'
np.save(save_dir, output)
print("Test finished, test results saved to .npy file at ", save_dir)
print(indices)
QIstr = model_title+'_'+str(time.ctime())+ ".txt"
json.dump(indices, open(QIstr, 'w'))
def sum_dict(a, b):
temp = dict()
for key in a.keys()| b.keys():
temp[key] = sum([d.get(key, 0) for d in (a, b)])
return temp
def adjust_learning_rate(start_lr, optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 150 epochs"""
lr = start_lr * (0.1 ** (epoch // 150)) # Chikusei x4
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def validate(args, loader, model, criterion):
device = torch.device("cuda" if args.cuda else "cpu")
# switch to evaluate mode
model.eval()
epoch_meter = meter.AverageValueMeter()
epoch_meter.reset()
with torch.no_grad():
for i, (ms, lms, gt) in enumerate(loader):
ms, lms, gt = ms.to(device), lms.to(device), gt.to(device)
y = model(ms, lms)
loss = criterion(y, gt)
epoch_meter.add(loss.item())
# back to training mode
model.train()
return epoch_meter.value()[0]
def test(args):
if args.dataset_name=='Cave':
colors = 31
elif args.dataset_name=='Pavia':
colors = 102
elif args.dataset_name=='Houston':
colors = 48
else:
colors = 128
test_data_dir = './datasets32/' + args.dataset_name + '_x' + str(args.n_scale) + '/' + args.dataset_name + '_test.mat'
result_path = './results/' + args.dataset_name + '_x' + str(args.n_scale) + '/'
model_title = args.model_title +'_Blocks=' + str(args.n_blocks) + '_Subs' + str(args.n_subs) + '_Ovls' + str(args.n_ovls) +'_Feats=' + str(args.n_feats)
model_name = './checkpoints/' + 'Sat Mar 25 18:55:19 2023/'+ args.dataset_name +'_'+ model_title + "_ckpt_epoch_" + str(300) + ".pth"
device = torch.device("cuda" if args.cuda else "cpu")
print('===> Loading testset')
test_set = HSTestData(test_data_dir)
test_loader = DataLoader(test_set, batch_size=1, shuffle=False)
print('===> Start testing')
with torch.no_grad():
test_number = 0
epoch_meter = meter.AverageValueMeter()
epoch_meter.reset()
# loading model
net = MSDformer(n_subs=args.n_subs, n_ovls=args.n_ovls, n_colors=colors, scale=args.n_scale,
n_feats=args.n_feats, n_DCTM=args.n_blocks, conv=default_conv)
net.to(device).eval()
state_dict = torch.load(model_name)
net.load_state_dict(state_dict["model"])
output = []
for i, (ms, lms, gt) in enumerate(test_loader):
# compute output
ms, lms, gt = ms.to(device), lms.to(device), gt.\
to(device)
# y = model(ms)
y = net(ms, lms)
y, gt = y.squeeze().cpu().numpy().transpose(1, 2, 0), gt.squeeze().cpu().numpy().transpose(1, 2, 0)
y = y[:gt.shape[0],:gt.shape[1],:]
if i==0:
indices = quality_assessment(gt, y, data_range=1., ratio=4)
else:
indices = sum_dict(indices, quality_assessment(gt, y, data_range=1., ratio=4))
output.append(y)
test_number += 1
for index in indices:
indices[index] = indices[index] / test_number
# save the results
save_dir = result_path + model_title + '.npy'
np.save(save_dir, output)
print("Test finished, test results saved to .npy file at ", save_dir)
print(indices)
QIstr = result_path + model_title+'_'+str(time.ctime())+ ".txt"
json.dump(indices, open(QIstr, 'w'))
def save_checkpoint(args, model, epoch, traintime):
device = torch.device("cuda" if args.cuda else "cpu")
model.eval().cpu()
checkpoint_model_dir = './checkpoints/'+traintime+'/'
if not os.path.exists(checkpoint_model_dir):
os.makedirs(checkpoint_model_dir)
ckpt_model_filename = args.dataset_name + "_" + args.model_title + "_ckpt_epoch_" + str(epoch) + ".pth"
ckpt_model_path = os.path.join(checkpoint_model_dir, ckpt_model_filename)
if torch.cuda.device_count() > 1:
state = {"epoch": epoch, "model": model.module.state_dict()}
else:
state = {"epoch": epoch, "model": model.state_dict()}
torch.save(state, ckpt_model_path)
model.to(device).train()
print("Checkpoint saved to {}".format(ckpt_model_path))
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Total number of parameters: %d' % num_params)
if __name__ == "__main__":
main()