-
Notifications
You must be signed in to change notification settings - Fork 3
/
PointwiseOpsKernel.cpp
102 lines (93 loc) · 3.45 KB
/
PointwiseOpsKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
// Ternary and higher-order pointwise operations
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/native/PointwiseOps.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cpu/Loops.h>
namespace at {
namespace native {
namespace {
static void addcmul_cpu_kernel(TensorIterator& iter, Scalar value) {
ScalarType dtype = iter.dtype(0);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(dtype, "addcmul_cpu_out", [&] {
scalar_t scalar_val = value.to<scalar_t>();
auto scalar_vec = Vec256<scalar_t>(scalar_val);
cpu_kernel_vec(
iter,
[=](scalar_t self_val, scalar_t t1_val, scalar_t t2_val) -> scalar_t {
return self_val + scalar_val * t1_val * t2_val;
},
[=](Vec256<scalar_t> self_vec,
Vec256<scalar_t> t1_vec,
Vec256<scalar_t> t2_vec) {
return self_vec + scalar_vec * t1_vec * t2_vec;
});
});
}
static void addcdiv_cpu_kernel(TensorIterator& iter, Scalar value) {
ScalarType dtype = iter.dtype(0);
AT_DISPATCH_ALL_TYPES_AND_COMPLEX(dtype, "addcdiv_cpu_out", [&] {
scalar_t scalar_val = value.to<scalar_t>();
auto scalar_vec = Vec256<scalar_t>(scalar_val);
cpu_kernel_vec(
iter,
[=](scalar_t self_val, scalar_t t1_val, scalar_t t2_val) -> scalar_t {
return self_val + scalar_val * t1_val / t2_val;
},
[=](Vec256<scalar_t> self_vec,
Vec256<scalar_t> t1_vec,
Vec256<scalar_t> t2_vec) {
return self_vec + scalar_vec * t1_vec / t2_vec;
});
});
}
static void smooth_l1_backward_cpu_kernel(TensorIterator& iter, Scalar norm) {
ScalarType dtype = iter.dtype(0);
AT_DISPATCH_ALL_TYPES(dtype, "smooth_l1_backward_cpu_out", [&] {
auto norm_val = norm.to<scalar_t>();
auto norm_val_vec = Vec256<scalar_t>(norm_val);
const auto neg_1_vec = Vec256<scalar_t>(-1);
const auto pos_1_vec = Vec256<scalar_t>(1);
cpu_kernel_vec(iter,
[=](scalar_t input, scalar_t target, scalar_t grad_output) -> scalar_t {
const auto x = input - target;
if (x < -1.)
return -norm_val * grad_output;
else if (x > 1.)
return norm_val * grad_output;
else
return norm_val * x * grad_output;
},
[norm_val_vec, neg_1_vec, pos_1_vec](
Vec256<scalar_t> input, Vec256<scalar_t> target, Vec256<scalar_t> grad_output) -> Vec256<scalar_t> {
auto x = input - target;
x = clamp(x, neg_1_vec, pos_1_vec);
return norm_val_vec * x * grad_output;
}
);
});
}
static void mse_backward_cpu_kernel(TensorIterator& iter, Scalar value) {
ScalarType dtype = iter.dtype(0);
AT_DISPATCH_ALL_TYPES(dtype, "mse_backward_cpu_out", [&] {
scalar_t scalar_val = value.to<scalar_t>();
auto scalar_vec = Vec256<scalar_t>(scalar_val);
cpu_kernel_vec(
iter,
[=](scalar_t self_val, scalar_t t1_val, scalar_t t2_val) -> scalar_t {
return scalar_val * (self_val - t1_val) * t2_val;
},
[=](Vec256<scalar_t> self_vec,
Vec256<scalar_t> t1_vec,
Vec256<scalar_t> t2_vec) {
return scalar_vec * (self_vec - t1_vec) * t2_vec;
});
});
}
} // anonymous namespace
REGISTER_DISPATCH(addcmul_stub, &addcmul_cpu_kernel);
REGISTER_DISPATCH(addcdiv_stub, &addcdiv_cpu_kernel);
REGISTER_DISPATCH(smooth_l1_backward_stub, &smooth_l1_backward_cpu_kernel);
REGISTER_DISPATCH(mse_backward_stub, &mse_backward_cpu_kernel);
} // namespace native
} // namespace at