-
Notifications
You must be signed in to change notification settings - Fork 3
/
gen_unboxing_wrappers.py
541 lines (463 loc) · 20 KB
/
gen_unboxing_wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
"""
To run this file by hand from the root of the PyTorch
repository, run:
python -m tools.jit.gen_unboxing_wrappers \
build/aten/src/ATen/Declarations.yaml \
$OUTPUT_DIR \
tools/jit/templates
Where $OUTPUT_DIR is where you would like the files to be
generated. In the full build system, OUTPUT_DIR is
torch/csrc/jit/generated/
"""
# This file generates generated_unboxing_wrappers, which contains
# manual unboxing wrappers for ops that aren't use_c10_dispatcher: full
# because the templated unboxing logic in c10 doesn't support them yet.
# The ultimate goal is to make all ops use the templated unboxing and
# delete this codegen file.
import argparse
import re
import yaml
from itertools import groupby
from ..autograd.gen_autograd import load_aten_declarations
from ..autograd.gen_autograd import RETURNS_VIEWS_OF_INPUT
from ..autograd.utils import CodeTemplate, write, is_out_variant, signature_without_args, YamlLoader
# JIT has a type system of
# Scalar = int | float | bool # int is the largest int (int64_t),
# float is the largest float (double) we don't have the others because they are never held in tensors
# Type = Scalar # primitive numbers
# | Tensor # any tensor, as defined by at::Tensor
# | Type[] # a dynamically sized list[ of a type
# | Scalar[N] # a homogenous fixed size scalar list, single scalars can expand to this list
# | (Type1, Type2, ...) # a heterogeneous tuple
# | Layout | ScalarType | Device | Generator # special singleton types for built-in concepts in tensor lib
# clean up the variety of C++ types in the ATen declarations
# to be in the restricted set of types that the IR represents
# note: no default values for this map, to make it clear what types
# can be passedthrough
TYPE_MAP = {
'std::array<bool,2>': 'bool[2]',
'std::array<bool,3>': 'bool[3]',
'std::array<bool,4>': 'bool[4]',
'std::string': 'str',
'Scalar': 'Scalar',
'MemoryFormat': 'MemoryFormat',
'MemoryFormat?': 'MemoryFormat?',
'QScheme': 'QScheme',
'Scalar?': 'Scalar?',
'Tensor': 'Tensor',
'Tensor?': 'Tensor?',
'TensorList': 'Tensor[]',
# this appears in return values instead of TensorList
# since TensorList is a ArrayRef in arguments but a vector
# in returns
'std::vector<Tensor>': 'Tensor[]',
'IntArrayRef': 'int[]',
'IntArrayRef?': 'int[]?',
'ArrayRef<double>?': 'float[]?',
'Layout': 'Layout',
'Layout?': 'Layout?',
'Device': 'Device',
'Device?': 'Device?',
'ScalarType': 'ScalarType',
'ScalarType?': 'ScalarType?',
'int64_t': 'int',
'int64_t?': 'int?',
'double': 'float',
'double?': 'float?',
'bool': 'bool',
'bool?': 'bool?',
'Generator': 'Generator?',
'Generator?': 'Generator?',
}
def optional_type_of(arg, typ):
# optional type special handling for Tensor?[] and Tensor
# types that is missing a optional annotation
if arg.get('is_nullable') and '?' not in typ:
if typ == 'TensorList' or typ == 'Tensor[]':
typ = 'Tensor?[]'
else:
typ = '{}?'.format(typ)
return typ
def annotated_type_of(arg, typ):
anno = arg.get('annotation')
if anno:
typ = '{}({})'.format(typ, anno)
return typ
def jit_type_of(arg):
jit_type = arg.get('jit_type')
if not jit_type:
jit_type = TYPE_MAP[arg['simple_type']]
if is_sized_intlist_arg(arg):
jit_type = 'int[{}]'.format(arg['size'])
jit_type = optional_type_of(arg, jit_type)
jit_type = annotated_type_of(arg, jit_type)
arg['jit_type'] = jit_type
return jit_type
# map from aten 'simple_type' to the function that will turn a tensor into
# that type
FROM_IVALUE = {
'Device': '{}.toDevice()',
'Device?': '{}.toOptional<c10::Device>()',
'IntArrayRef': '{}.toIntVector()',
'IntArrayRef?': '{}.toOptionalIntArray()',
'ArrayRef<double>?': '{}.toOptionalDoubleArray()',
'Layout': '{}.toLayout()',
'Layout?': '{}.toOptional<c10::Layout>()',
'MemoryFormat': '{}.toMemoryFormat()',
'MemoryFormat?': '{}.toOptional<c10::MemoryFormat>()',
'QScheme': '{}.toQScheme()',
'Scalar': '{}.toScalar()',
'Scalar?': '{}.toOptional<Scalar>()',
'ScalarType': '{}.toScalarType()',
'ScalarType?': '{}.toOptional<ScalarType>()',
'Tensor': '{}.toTensor()',
'Tensor?': 'toOptionalTensor({})',
'Tensor?[]': 'toListOfOptionalTensor({})',
'TensorList': '{}.toTensorVector()',
'bool': '{}.toBool()',
'bool?': '{}.toOptional<bool>()',
'double': '{}.toDouble()',
'double?': '{}.toOptional<double>()',
'int64_t': '{}.toInt()',
'int64_t?': '{}.toOptional<int64_t>()',
'std::string': '{}.toStringRef()',
'Generator?': '{}.toOptional<at::Generator>()',
'std::array<bool,2>': 'as_bool_array<2>({}.toBoolList())',
'std::array<bool,3>': 'as_bool_array<3>({}.toBoolList())',
'std::array<bool,4>': 'as_bool_array<4>({}.toBoolList())',
}
def from_ivalue(arg, value):
typ = optional_type_of(arg, arg['simple_type'])
return FROM_IVALUE[typ].format(value)
CALL_UNBOXED_KERNEL = CodeTemplate("""\
auto result_ = callUnboxedKernel<${return_type}${formals_types_with_leading_comma}>(unboxedKernel${args_with_leading_comma});
""")
CALL_NAMESPACE = CodeTemplate("""\
auto result_ = at::${name}(
${args}
);
""")
CALL_METHOD = CodeTemplate("""\
auto result_ = (${first}).${name}(
${args}
);
""")
CALL_NAMESPACE_WITH_TENSOR_OPTIONS = CodeTemplate("""\
const auto options = TensorOptions()
.dtype(${dtype})
.layout(${layout})
.device(${device})
.pinned_memory(${pin_memory});
#ifdef USE_STATIC_DISPATCH
auto result_ = at::${name}(${args_with_tensor_options});
#else
auto result_ = torch::${name}(${args_with_tensor_options});
#endif
""")
CALL_METHOD_WITH_TENSOR_OPTIONS = CodeTemplate("""\
const auto options = TensorOptions()
.dtype(${dtype})
.layout(${layout})
.device(${device})
.pinned_memory(${pin_memory});
auto result_ = (${first}).${name}(${args_with_tensor_options});
""")
CONSTRUCTOR = CodeTemplate("""\
[](OperatorKernel* unboxedKernel, const OperatorHandle&, Stack* stack) {
using namespace at;
${lvalues}
${call}
drop(*stack, ${num_inputs});
pack(*stack, std::move(result_));
}
""")
OPERATOR = CodeTemplate("""\
.op("${signature}",
${op})
""")
disallowed_types = {
'Storage',
'DimnameList?',
'ConstQuantizerPtr',
'Dimname',
'DimnameList',
}
default_only_types = {'Generator'}
def is_jit_arg(i, arg):
simple_type = arg['simple_type']
if simple_type in disallowed_types:
return False
if simple_type in default_only_types and 'default' not in arg:
return False
if simple_type == 'Type':
return False
return True
def is_jit_op(decl):
# We currently don't support functions that return nothing
assert all(r['type'] != 'void' for r in decl['returns'])
if len(decl['returns']) == 0:
return False
arguments = decl['arguments']
# there must be a single out variant
if is_out_variant(decl) and sum([not not arg.get('output') for arg in arguments]) > 1:
return False
return (('namespace' in decl['method_of'] or 'Tensor' in decl['method_of']) and
all(is_jit_arg(i, arg) for i, arg in enumerate(decl['arguments'])) and
all(is_jit_arg(i, arg) for i, arg in enumerate(decl['returns'])))
def is_tensor_arg(arg):
return arg['simple_type'] in {'Tensor', 'TensorList'}
def is_sized_intlist_arg(arg):
"""Returns True for arguments declared as IntArrayRef[k], but False for IntArrayRef."""
return (arg['simple_type'] == 'IntArrayRef') and ('size' in arg)
def base_name(decl):
name = decl['name']
return name[:-1] if decl.get('inplace', False) else name[:-4] if name.endswith('_out') else name
def is_view(decl):
return base_name(decl) in RETURNS_VIEWS_OF_INPUT
# Copied from ..autograd.gen_python_functions.SKIP_PYTHON_BINDINGS
BACKWARD_OP_PATTERNS = [
'.*_backward',
'.*_backward_(out|input|weight|bias)',
]
def is_backward_op(decl):
for pattern in BACKWARD_OP_PATTERNS:
if re.match('^' + pattern + '$', decl['name']):
return True
return False
# for each argument in decl, the location it should appear in the
# jit schema declaration. e.g.
# arguments = [x, y, z] # the order in aten
# jit_argument_order = [2, 0, 1]
# aten::my_arg(Tensor y, Tensor z, Tensor x) # the order in schema
# used to move 'out' arguments to the end of the list
def argument_order(decl):
return decl.get('jit_argument_order') or list(range(len(decl['arguments'])))
def load_op_list(path):
with open(path, 'r') as f:
op_list = yaml.load(f, Loader=YamlLoader)
return op_list
def gen_unboxing_wrappers(
declarations,
out,
template_path,
disable_autograd=False,
selected_op_list_path=None,
selected_op_list=None,
force_schema_registration=False,
):
GENERATED_UNBOXING_WRAPPERS_CPP = CodeTemplate.from_file(template_path + '/generated_unboxing_wrappers.cpp')
ops = []
def get_invocation(decl, args, num_inputs):
# because the arg list can get lengthy we put them on a separate line
def pack_arguments(args):
return ',\n'.join(args)
is_namespace_function = 'namespace' in decl['method_of']
tensor_options_arg_index = decl.get('tensor_options_arg_index', None)
if tensor_options_arg_index is not None:
dtype = args[tensor_options_arg_index]
layout = args[tensor_options_arg_index + 1]
device = args[tensor_options_arg_index + 2]
pin_memory = args[tensor_options_arg_index + 3]
args_with_tensor_options = args[:tensor_options_arg_index] + \
['options'] + args[(tensor_options_arg_index + 4):]
if is_namespace_function:
return CALL_NAMESPACE_WITH_TENSOR_OPTIONS.substitute(
name=decl['name'], dtype=dtype, layout=layout,
device=device, pin_memory=pin_memory,
args_with_tensor_options=pack_arguments(args_with_tensor_options))
else:
return CALL_METHOD_WITH_TENSOR_OPTIONS.substitute(
name=decl['name'], dtype=dtype, layout=layout,
device=device, pin_memory=pin_memory,
args_with_tensor_options=pack_arguments(args_with_tensor_options[1:]),
first=args_with_tensor_options[0], num_inputs=num_inputs)
elif decl['use_c10_dispatcher'] == 'with_codegenerated_unboxing_wrapper':
if len(decl['returns']) == 0:
return_type = "void"
elif len(decl['returns']) == 1:
return_type = decl['returns'][0]['type']
else:
return_type = "std::tuple<{}>".format(", ".join([r['type'] for r in decl['returns']]))
for a in decl['arguments']:
if 'type' not in a:
raise Exception(decl)
argument_types_with_leading_comma = ", ".join([a['type'] for a in decl['arguments']])
if argument_types_with_leading_comma != "":
argument_types_with_leading_comma = ", " + argument_types_with_leading_comma
args_with_leading_comma = pack_arguments(args)
if args_with_leading_comma != "":
args_with_leading_comma = ", " + args_with_leading_comma
return CALL_UNBOXED_KERNEL.substitute(name=decl['name'],
args_with_leading_comma=args_with_leading_comma,
num_inputs=num_inputs,
return_type=return_type,
formals_types_with_leading_comma=argument_types_with_leading_comma)
else:
assert decl['use_c10_dispatcher'] == 'full'
if is_namespace_function:
return CALL_NAMESPACE.substitute(name=decl['name'],
args=pack_arguments(args),
num_inputs=num_inputs)
else:
return CALL_METHOD.substitute(
name=decl['name'], first=args[0],
args=pack_arguments(args[1:]), num_inputs=num_inputs)
def requires_lvalue(arg):
jit_type = jit_type_of(arg)
return jit_type.startswith('Tensor') and '!' in jit_type
def emit_decl_variant(decl):
if ('emit_dummy_placeholder' in decl):
return "DUMMY_OPERATION"
kw_assignments = []
# mutable arguments in aten are passed as non const references
# these must be lvalues, so we have to put them in variables
# before calling the function
lvalues = []
arguments = []
num_inputs = len(decl['arguments'])
op_capture = ''
order = argument_order(decl)
for i, arg in enumerate(decl['arguments']):
value = from_ivalue(arg, '(std::move(peek(*stack, {}, {})))'.format(order[i], num_inputs))
if requires_lvalue(arg):
lvalues.append('auto {} = {};\n'.format(arg['name'], value))
value = arg['name']
arguments.append(value)
call = get_invocation(decl, arguments, num_inputs)
returns = decl['returns']
if decl['use_c10_dispatcher'] == 'with_codegenerated_unboxing_wrapper':
constructor = CONSTRUCTOR.substitute(name=decl['name'],
call=call,
kw_assignments=kw_assignments,
num_inputs=num_inputs,
op_capture=op_capture,
lvalues=lvalues)
else:
assert decl['use_c10_dispatcher'] == 'full'
return constructor
def filter_decls(jit_decls, disable_autograd, selected_op_list, force_schema_registration):
result = []
for decl in jit_decls:
if disable_autograd and is_backward_op(decl):
continue
op_name = signature_without_args(decl)
if selected_op_list and op_name not in selected_op_list:
if force_schema_registration:
decl['emit_dummy_placeholder'] = True
else:
continue
result.append(decl)
return result
# This function declares an order on declarations. This is necessary because
# there is some ambiguity in the choice of overload: if an argument is overloaded
# to accept both Scalar and Tensor, the schema with the Tensor should come first
# TODO: this can (probably) be removed when we remove the implicit conversion
# from Tensor -> Number.
def sort_decls(jit_decls):
def declkey(decl):
# key = sum_{i < len(args)} {1 if arg is tensor else 2} * (3 ** i)
# This is a ternary encoding where
# 0: No argument at this position
# 1: Tensor argument at this position
# 2: Some other argument at this position.
args = decl['arguments']
result = 0
for i in range(len(args)):
result += (3 ** i) * (1 if args[i]['simple_type'] == 'Tensor' else 2)
return result
# NB: itertools.groupby requires the list be sorted.
sorted_decls = sorted(jit_decls, key=lambda decl: decl['name'])
grouped_decls = [list(g) for _, g in
groupby(sorted_decls, key=lambda decl: decl['name'])]
return [sorted(g, key=declkey) for g in grouped_decls]
aten_decls = load_aten_declarations(declarations)
jit_decls = [d for d in aten_decls if is_jit_op(d)]
# add arguments dtype and device for functions like zeros
def expand_options(decl, i, arg):
if arg['simple_type'] != 'TensorOptions':
return [arg]
assert decl.get('tensor_options_arg_index') != i
decl['tensor_options_arg_index'] = i
tensor_options_expansion = [
# XXX - until we actually have first-class interpreter types for these
# concepts, the default values to be encoded in Tensors
# If you change this, you also need to update [TensorOptions in script]
# in the tracer code.
# dtype is specified as an int64_t of at::ScalarType
{'name': 'dtype', 'simple_type': 'ScalarType'},
# layout is specified as an int64_t of at::Layout
{'name': 'layout', 'simple_type': 'Layout'},
# device is specified as an IntArrayRef of { at::Device::Type, device_id }
{'name': 'device', 'simple_type': 'Device'},
# pin_memory is specified as a boolean
{'name': 'pin_memory', 'simple_type': 'bool', 'default': False},
]
# TODO: Don't repack this into TensorOptions. Needs various changes in downstream code.
if 'default' in arg:
for el in tensor_options_expansion:
el['simple_type'] += '?'
el['default'] = 'None'
if 'default' in arg and arg['default'] == 'at::kLong':
tensor_options_expansion[0]['default'] = 'long'
if 'kwarg_only' in arg and arg['kwarg_only']:
for el in tensor_options_expansion:
el['kwarg_only'] = True
return tensor_options_expansion
additional_jit_decls = []
for decl in jit_decls:
decl['arguments'] = [a for i, arg in enumerate(decl['arguments']) for a in expand_options(decl, i, arg)]
if is_out_variant(decl):
reorder_out_args(decl)
jit_decls.extend(additional_jit_decls)
if not selected_op_list:
selected_op_list = []
selected_op_list += load_op_list(selected_op_list_path) if selected_op_list_path else []
jit_decls = filter_decls(jit_decls, disable_autograd, selected_op_list, force_schema_registration)
# generation is deterministic
jit_decl_groups = sort_decls(jit_decls)
# NOTE: see Note [Sharded File] at the top of the generated_unboxing_wrappers.cpp
# template regarding sharding of the generated files.
#
# If you edit the number of shards here, you will also have to
# modify generate_code.py, torch/CMakeLists.txt, and the TARGETS
# files.
num_shards = 3
shards = [[] for _ in range(num_shards)]
# ops are assigned arbitrarily but stably to a file based on hash
for group in jit_decl_groups:
x = sum(ord(c) for c in group[0]['name']) % num_shards
for decl in group:
if decl['use_c10_dispatcher'] == 'with_codegenerated_unboxing_wrapper':
shards[x].append(OPERATOR.substitute(signature=decl['schema_string'],
op=emit_decl_variant(decl)))
else:
assert decl['use_c10_dispatcher'] == 'full'
for i, shard in enumerate(shards):
env = {
'constructors': shard,
}
write(out, 'generated_unboxing_wrappers_%d.cpp' % i, GENERATED_UNBOXING_WRAPPERS_CPP, env)
default_map = {'{}': 'None', 'nullptr': 'None', 'c10::nullopt': 'None'}
def reorder_out_args(decl):
first_arg = decl['arguments'][0]
assert(first_arg['output'])
# the output variant must go at the end
# note: this is an annoying side effect of using a single '*'
# to denote kwarg_only
nargs = len(decl['arguments'])
decl['jit_argument_order'] = [nargs - 1] + list(range(nargs - 1))
def is_kwarg_only(a):
return a.get('kwarg_only') or a.get('output')
def main():
parser = argparse.ArgumentParser(
description='Generate JIT op dispatch')
parser.add_argument('declarations', metavar='DECL',
help='path to Declarations.yaml')
parser.add_argument('out', metavar='OUT',
help='path to output directory')
parser.add_argument('template_path', metavar='TEMPLATE_PATH',
help='path to templates directory')
args = parser.parse_args()
gen_unboxing_wrappers(args.declarations, args.out, args.template_path)
if __name__ == '__main__':
main()