forked from vansky/neural-complexity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
666 lines (595 loc) · 29.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
'''
Code for training and evaluating a neural language model.
LM can output incremental complexity measures and be made adaptive.
'''
from __future__ import print_function
import argparse
import time
import math
import sys
import warnings
import torch
import torch.nn as nn
import data
import model
try:
from progress.bar import Bar
PROGRESS = True
except ModuleNotFoundError:
PROGRESS = False
# suppress SourceChangeWarnings
warnings.filterwarnings("ignore")
sys.stderr.write('Libraries loaded\n')
# Parallelization notes:
# Does not currently operate across multiple nodes
# Single GPU is better for default: tied,emsize:200,nhid:200,nlayers:2,dropout:0.2
#
# Multiple GPUs are better for tied,emsize:1500,nhid:1500,nlayers:2,dropout:0.65
# 4 GPUs train on wikitext-2 in 1/2 - 2/3 the time of 1 GPU
parser = argparse.ArgumentParser(description='PyTorch RNN/LSTM Language Model')
# Model parameters
parser.add_argument('--model', type=str, default='LSTM',
choices=['RNN_TANH', 'RNN_RELU', 'LSTM', 'GRU'],
help='type of recurrent net')
parser.add_argument('--emsize', type=int, default=200,
help='size of word embeddings')
parser.add_argument('--nhid', type=int, default=200,
help='number of hidden units per layer')
parser.add_argument('--nlayers', type=int, default=2,
help='number of layers')
parser.add_argument('--lr', type=float, default=20,
help='initial learning rate')
parser.add_argument('--clip', type=float, default=0.25,
help='gradient clipping')
parser.add_argument('--epochs', type=int, default=40,
help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
help='batch size')
parser.add_argument('--grad_accumulation_steps', type=int, default=1,
help='accumulates gradients over N sub-batches to avoid out of memory errors')
parser.add_argument('--bptt', type=int, default=35,
help='sequence length')
parser.add_argument('--dropout', type=float, default=0.2,
help='dropout applied to layers (0 = no dropout)')
parser.add_argument('--tied', action='store_true',
help='tie the word embedding and softmax weights')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--cuda', action='store_true',
help='use CUDA')
parser.add_argument('--init', type=float, default=None,
help='-1 to randomly Initialize. Otherwise, all parameter weights set to value')
# Data parameters
parser.add_argument('--model_file', type=str, default='model.pt',
help='path to save the final model')
parser.add_argument('--adapted_model', type=str, default='adaptedmodel.pt',
help='new path to save the final adapted model')
parser.add_argument('--data_dir', type=str, default='./data/wikitext-2',
help='location of the corpus data')
parser.add_argument('--vocab_file', type=str, default='vocab.txt',
help='path to save the vocab file')
parser.add_argument('--embedding_file', type=str, default=None,
help='path to pre-trained embeddings')
parser.add_argument('--trainfname', type=str, default='train.txt',
help='name of the training file')
parser.add_argument('--validfname', type=str, default='valid.txt',
help='name of the validation file')
parser.add_argument('--testfname', type=str, default='test.txt',
help='name of the test file')
parser.add_argument('--collapse_nums_flag', action='store_true',
help='collapse number tokens into a unified <num> token')
# Runtime parameters
parser.add_argument('--test', action='store_true',
help='test a trained LM')
parser.add_argument('--load_checkpoint', action='store_true',
help='continue training a pre-trained LM')
parser.add_argument('--freeze_embedding', action='store_true',
help='do not train embedding weights')
parser.add_argument('--single', action='store_true',
help='use only a single GPU (even if more are available)')
parser.add_argument('--multisentence_test', action='store_true',
help='treat multiple sentences as a single stream at test time')
parser.add_argument('--adapt', action='store_true',
help='adapt model weights during evaluation')
parser.add_argument('--interact', action='store_true',
help='run a trained network interactively')
# For getting embeddings
parser.add_argument('--view_emb', action='store_true',
help='output the word embedding rather than the cell state')
parser.add_argument('--view_layer', type=int, default=-1,
help='which layer should output cell states')
parser.add_argument('--view_hidden', action='store_true',
help='output the hidden state rather than the cell state')
parser.add_argument('--verbose_view_layer', action='store_true',
help='output the input observation followed by the vector activations')
parser.add_argument('--words', action='store_true',
help='evaluate word-level complexities (instead of sentence-level loss)')
parser.add_argument('--log_interval', type=int, default=200, metavar='N',
help='report interval')
parser.add_argument('--lowercase', action='store_true',
help='force all input to be lowercase')
parser.add_argument('--nopp', action='store_true',
help='suppress evaluation perplexity output')
parser.add_argument('--nocheader', action='store_true',
help='suppress complexity header')
parser.add_argument('--csep', type=str, default=' ',
help='change the separator in the complexity output')
parser.add_argument('--guess', action='store_true',
help='display best guesses at each time step')
parser.add_argument('--guessn', type=int, default=1,
help='output top n guesses')
parser.add_argument('--guesssurps', action='store_true',
help='display guess surps along with guesses')
parser.add_argument('--guessprobs', action='store_true',
help='display guess probs along with guesses')
parser.add_argument('--complexn', type=int, default=0,
help='compute complexity only over top n guesses (0 = all guesses)')
# Misc parameters not in README
parser.add_argument('--softcliptopk', action="store_true",
help='soften non top-k options instead of removing them')
args = parser.parse_args()
if args.interact:
# If in interactive mode, force complexity output
args.words = True
args.test = True
# Don't try to process multiple sentences in parallel interactively
args.single = True
if args.adapt:
# If adapting, we must be in test mode
args.test = True
if args.view_layer != -1:
# There shouldn't be a cheader if we're looking at model internals
args.nocheader = True
# Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
if torch.cuda.is_available():
if not args.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
else:
torch.cuda.manual_seed(args.seed)
if torch.cuda.device_count() == 1:
args.single = True
device = torch.device("cuda" if args.cuda else "cpu")
###############################################################################
# Load data
###############################################################################
def batchify(data, bsz):
''' Starting from sequential data, batchify arranges the dataset into columns.
For instance, with the alphabet as the sequence and batch size 4, we'd get
a g m s
b h n t
c i o u
d j p v
e k q w
f l r x
These columns are treated as independent by the model, which means that the
dependence of e. g. 'g' on 'f' can not be learned, but allows more efficient
batch processing.
'''
# Work out how cleanly we can divide the dataset into bsz parts.
nbatch = data.size(0) // bsz
# Trim off any extra elements that wouldn't cleanly fit (remainders).
data = data.narrow(0, 0, nbatch * bsz)
# Evenly divide the data across the bsz batches.
data = data.view(bsz, -1).t().contiguous()
# Turning the data over to CUDA at this point may lead to more OOM errors
return data.to(device)
try:
with open(args.vocab_file, 'r') as f:
# We're using a pre-existing vocab file, so we shouldn't overwrite it
args.predefined_vocab_flag = True
except FileNotFoundError:
# We should create a new vocab file
args.predefined_vocab_flag = False
corpus = data.SentenceCorpus(args.data_dir, args.vocab_file, args.test, args.interact,
checkpoint_flag=args.load_checkpoint,
predefined_vocab_flag=args.predefined_vocab_flag,
collapse_nums_flag=args.collapse_nums_flag,
multisentence_test_flag=args.multisentence_test,
lower_flag=args.lowercase,
trainfname=args.trainfname,
validfname=args.validfname,
testfname=args.testfname)
if not args.interact:
if args.test:
if args.multisentence_test:
test_data = [corpus.test]
else:
test_sents, test_data = corpus.test
else:
train_data = batchify(corpus.train, args.batch_size)
val_data = batchify(corpus.valid, args.batch_size)
###############################################################################
# Build/load the model
###############################################################################
if not args.test and not args.interact:
if args.load_checkpoint:
# Load the best saved model.
print(' Continuing training from previous checkpoint')
with open(args.model_file, 'rb') as f:
if args.cuda:
model = torch.load(f).to(device)
else:
model = torch.load(f, map_location='cpu')
else:
ntokens = len(corpus.dictionary)
model = model.RNNModel(args.model, ntokens, args.emsize, args.nhid,
args.nlayers, embedding_file=args.embedding_file,
dropout=args.dropout, tie_weights=args.tied,
freeze_embedding=args.freeze_embedding).to(device)
if args.cuda and (not args.single) and (torch.cuda.device_count() > 1):
# If applicable, use multi-gpu for training
# Scatters minibatches (in dim=1) across available GPUs
model = nn.DataParallel(model, dim=1)
if isinstance(model, torch.nn.DataParallel):
# if multi-gpu, access real model for training
model = model.module
# after load the rnn params are not a continuous chunk of memory
# this makes them a continuous chunk, and will speed up forward pass
model.rnn.flatten_parameters()
# setup model with optimizer and scheduler
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',patience=0,factor=0.1)
criterion = nn.CrossEntropyLoss(reduction='none')
###############################################################################
# Complexity measures
###############################################################################
def get_entropy(state):
''' Computes entropy of input vector '''
# state should be a vector scoring possible classes
# returns a scalar entropy over state
if args.complexn == 0:
beam = state
else:
# duplicate state but with all losing guesses set to 0
beamk, beamix = torch.topk(state, args.complexn, 0)
if args.softcliptopk:
beam = torch.FloatTensor(state.size()).to(device).fill_(0).scatter(0, beamix, beamk)
else:
beam = torch.FloatTensor(state.size()).to(device).fill_(float("-inf")).scatter(0, beamix, beamk)
probs = nn.functional.softmax(beam, dim=0)
# log_softmax is numerically more stable than two separate operations
logprobs = nn.functional.log_softmax(beam, dim=0)
prod = probs.data * logprobs.data
# sum but ignore nans
return torch.Tensor([-1 * torch.sum(prod[prod == prod])]).to(device)
def get_surps(state):
''' Computes surprisal for each element in given vector '''
# state should be a vector scoring possible classes
# returns a vector containing the surprisal of each class in state
if args.complexn == 0:
beam = state
else:
# duplicate state but with all losing guesses set to 0
beamk, beamix = torch.topk(state, args.complexn, 0)
if args.softcliptopk:
beam = torch.FloatTensor(state.size()).to(device).fill_(0).scatter(0, beamix, beamk)
else:
beam = torch.FloatTensor(state.size()).to(device).fill_(float("-inf")).scatter(0, beamix, beamk)
logprobs = nn.functional.log_softmax(beam, dim=0)
return -1 * logprobs
def get_complexity(state, obs, sentid):
''' Generates complexity output for given state, observation, and sentid '''
Hs = torch.log2(torch.exp(torch.squeeze(apply(get_entropy, state))))
surps = torch.log2(torch.exp(apply(get_surps, state)))
for corpuspos, targ in enumerate(obs):
word = corpus.dictionary.idx2word[int(targ)]
if word == '<eos>':
# don't output the complexity of EOS
continue
surp = surps[corpuspos][int(targ)]
if args.guess:
outputguesses = []
guessscores, guesses = torch.topk(surps[corpuspos], args.guessn, dim= -1, largest=False)
for guess_ix in range(args.guessn):
outputguesses.append(corpus.dictionary.idx2word[int(guesses[corpuspos][guess_ix])])
if args.guesssurps:
# output guess surps
outputguesses.append("{:.3f}".format(float(guessscores[guess_ix])))
elif args.guessprobs:
# output probabilities
outputguesses.append("{:.3f}".format(2**(float(-1*guessscores[guess_ix]))))
outputguesses = args.csep.join(outputguesses)
print(args.csep.join([str(word), str(sentid), str(corpuspos), str(len(word)),
str(float(surp)), str(float(Hs[corpuspos])),
str(max(0, float(Hs[max(corpuspos-1, 0)])-float(Hs[corpuspos]))),
str(outputguesses)]))
else:
print(args.csep.join([str(word), str(sentid), str(corpuspos), str(len(word)),
str(float(surp)), str(float(Hs[corpuspos])),
str(max(0, float(Hs[max(corpuspos-1, 0)])-float(Hs[corpuspos])))]))
def apply(func, apply_dimension):
''' Applies a function along a given dimension '''
output_list = [func(m) for m in torch.unbind(apply_dimension, dim=0)]
return torch.stack(output_list, dim=0)
###############################################################################
# Training code
###############################################################################
def repackage_hidden(in_state):
""" Wraps hidden states in new Tensors, to detach them from their history. """
if isinstance(in_state, torch.Tensor):
return in_state.detach()
else:
return tuple(repackage_hidden(value) for value in in_state)
def get_batch(source, i):
""" get_batch subdivides the source data into chunks of length args.bptt.
If source is equal to the example output of the batchify function, with
a bptt-limit of 2, we'd get the following two Variables for i = 0:
a g m s b h n t
b h n t c i o u
Note that despite the name of the function, the subdivison of data is not
done along the batch dimension (i.e. dimension 1), since that was handled
by the batchify function. The chunks are along dimension 0, corresponding
to the seq_len dimension in the LSTM. """
seq_len = min(args.bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+1:i+1+seq_len]
return data, target.long()
def test_get_batch(source):
""" Creates an input/target pair for evaluation """
seq_len = len(source) - 1
data = source[:seq_len]
target = source[1:1+seq_len].view(-1)
return data, target.long()
def test_evaluate(test_sentences, data_source):
""" Evaluate at test time (with adaptation, complexity output) """
# Turn on evaluation mode which disables dropout.
if args.adapt:
# Must disable cuDNN in order to backprop during eval
torch.backends.cudnn.enabled = False
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
nwords = 0
if args.complexn > ntokens or args.complexn <= 0:
args.complexn = ntokens
if args.guessn > ntokens:
args.guessn = ntokens
sys.stderr.write('Using beamsize: '+str(ntokens)+'\n')
else:
sys.stderr.write('Using beamsize: '+str(args.complexn)+'\n')
if args.words:
if not args.nocheader:
if args.complexn == ntokens:
print('word{0}sentid{0}sentpos{0}wlen{0}surp{0}entropy{0}entred'.format(args.csep), end='')
else:
print('word{0}sentid{0}sentpos{0}wlen{0}surp{1}{0}entropy{1}{0}entred{1}'.format(args.csep, args.complexn), end='')
if args.guess:
for i in range(args.guessn):
print('{0}guess'.format(args.csep)+str(i), end='')
if args.guesssurps:
print('{0}gsurp'.format(args.csep)+str(i), end='')
elif args.guessprobs:
print('{0}gprob'.format(args.csep)+str(i), end='')
sys.stdout.write('\n')
if PROGRESS:
bar = Bar('Processing', max=len(data_source))
for i in range(len(data_source)):
sent_ids = data_source[i].to(device)
# We predict all words but the first, so determine loss for those
if test_sentences:
sent = test_sentences[i]
hidden = model.init_hidden(1) # number of parallel sentences being processed
data, targets = test_get_batch(sent_ids)
nwords += targets.flatten().size(0)
if args.view_layer >= 0:
for word_index in range(data.size(0)):
# Starting each batch, detach the hidden state
hidden = repackage_hidden(hidden)
model.zero_grad()
word_input = data[word_index].unsqueeze(0).unsqueeze(1)
target = targets[word_index].unsqueeze(0)
output, hidden = model(word_input, hidden)
output_flat = output.view(-1, ntokens)
loss = criterion(output_flat, target)
total_loss += loss.sum().item()
input_word = corpus.dictionary.idx2word[int(word_input.data)]
targ_word = corpus.dictionary.idx2word[int(target.data)]
if input_word != '<eos>': # not in (input_word,targ_word):
if args.verbose_view_layer:
print(input_word,end=" ")
# don't output <eos> markers to align with input
# output raw activations
if args.view_hidden:
# output hidden state
print(*list(hidden[0][args.view_layer].view(1, -1).data.cpu().numpy().flatten()), sep=' ')
elif args.view_emb:
#Get embedding for input word
emb = model.encoder(word_input)
# output embedding
print(*list(emb[0].view(1,-1).data.cpu().numpy().flatten()), sep=' ')
else:
# output cell state
print(*list(hidden[1][args.view_layer].view(1, -1).data.cpu().numpy().flatten()), sep=' ')
else:
data = data.unsqueeze(1) # only needed when a single sentence is being processed
output, hidden = model(data, hidden)
try:
output_flat = output.view(-1, ntokens)
except RuntimeError:
print("Vocabulary Error! Most likely there weren't unks in training and unks are now needed for testing")
raise
loss = criterion(output_flat, targets)
total_loss += loss.sum().item()
if args.words:
# output word-level complexity metrics
get_complexity(output_flat, targets, i)
else:
# output sentence-level loss
if test_sentences:
print(str(sent)+":"+str(loss.item()))
else:
print(str(loss.item()))
if args.adapt:
loss.mean().backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
hidden = repackage_hidden(hidden)
model.zero_grad()
if PROGRESS:
bar.next()
if PROGRESS:
bar.finish()
return total_loss / nwords
def evaluate(data_source):
""" Evaluate for validation (no adaptation, no complexity output) """
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
with torch.no_grad():
actual_batch_size = int(args.batch_size / args.grad_accumulation_steps)
# Construct hidden layers for each sub-batch
hidden_batch = []
for i in range(args.grad_accumulation_steps):
hidden_batch.append(model.init_hidden(actual_batch_size))
for i in range(0, data_source.size(0) - 1, args.bptt):
batch_data, batch_targets = get_batch(data_source, i)
for sub_batch_ix in range(args.grad_accumulation_steps):
sub_batch_start = sub_batch_ix * actual_batch_size
sub_batch_end = (sub_batch_ix + 1) * actual_batch_size
output, hidden_batch[sub_batch_ix] = model(batch_data[:,sub_batch_start:sub_batch_end], hidden_batch[sub_batch_ix])
output_flat = output.view(-1, ntokens)
total_loss += criterion(output_flat, batch_targets[:,sub_batch_start:sub_batch_end].flatten()).sum().item()
return total_loss / data_source.flatten().size(0)
def train():
""" Train language model """
# Turn on training mode which enables dropout.
model.train()
total_loss = 0.
total_data = 0.
start_time = time.time()
ntokens = len(corpus.dictionary)
actual_batch_size = int(args.batch_size / args.grad_accumulation_steps)
hidden_batch = []
for i in range(args.grad_accumulation_steps):
hidden_batch.append(model.init_hidden(actual_batch_size))
for batch, i in enumerate(range(0, train_data.size(0) - 1, args.bptt)):
batch_data, batch_targets = get_batch(train_data, i)
for sub_batch_ix in range(args.grad_accumulation_steps):
sub_batch_start = sub_batch_ix * actual_batch_size
sub_batch_end = (sub_batch_ix + 1) * actual_batch_size
output, hidden_batch[sub_batch_ix] = model(batch_data[:,sub_batch_start:sub_batch_end], hidden_batch[sub_batch_ix])
loss = criterion(output.view(-1, ntokens), batch_targets[:,sub_batch_start:sub_batch_end].flatten())
total_loss += loss.sum().item()
loss.mean().backward()
total_data += batch_data.flatten().size(0)
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
torch.nn.utils.clip_grad_norm(model.parameters(), args.clip)
optimizer.step()
# Detach the hidden state from how it was previously produced.
# If we didn't, the model would try backpropagating all the way to start of the dataset.
for sub_batch_ix in range(args.grad_accumulation_steps):
hidden_batch[sub_batch_ix] = repackage_hidden(hidden_batch[sub_batch_ix])
model.zero_grad()
if batch % args.log_interval == 0 and batch > 0:
curr_loss = total_loss / total_data
elapsed = time.time() - start_time
print('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
'loss {:5.2f} | ppl {:8.2f}'.format(
epoch, batch, len(train_data) // args.bptt, float(optimizer.param_groups[0]['lr']),
elapsed * 1000 / args.log_interval, curr_loss, math.exp(curr_loss)))
total_loss = 0.
total_data = 0.
start_time = time.time()
# Loop over epochs.
best_val_loss = None
no_improvement = 0
# At any point you can hit Ctrl + C to break out of training early.
if not args.test and not args.interact:
try:
for epoch in range(1, args.epochs+1):
epoch_start_time = time.time()
train()
val_loss = evaluate(val_data)
print('-' * 89)
print('| end of epoch {:3d} | time: {:5.2f}s | lr: {:4.8f} | '
'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time),
float(optimizer.param_groups[0]['lr']), math.exp(val_loss)))
print('-' * 89)
# Save the model if the validation loss is the best we've seen so far.
if not best_val_loss or val_loss < best_val_loss:
no_improvement = 0
with open(args.model_file, 'wb') as f:
torch.save(model, f)
best_val_loss = val_loss
else:
# Anneal the learning rate if no more improvement in the validation dataset.
no_improvement += 1
if no_improvement >= 3:
print('Covergence achieved! Ending training early')
break
scheduler.step(val_loss)
except KeyboardInterrupt:
print('-' * 89)
print('Exiting from training early')
else:
# Load the best saved model.
with open(args.model_file, 'rb') as f:
if args.cuda:
model = torch.load(f).to(device)
else:
model = torch.load(f, map_location='cpu')
if args.init is not None:
if args.init != -1:
model.set_parameters(args.init)
else:
model.randomize_parameters()
# after load the rnn params are not a continuous chunk of memory
# this makes them a continuous chunk, and will speed up forward pass
if isinstance(model, torch.nn.DataParallel):
# if multi-gpu, access real model for testing
model = model.module
model.rnn.flatten_parameters()
# setup model with optimizer and scheduler
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, nesterov=True)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min',patience=0,factor=0.1)
# Run on test data.
if args.interact:
# First fix Python 2.x input command
try:
input = raw_input
except NameError:
pass
n_rnn_param = sum([p.nelement() for p in model.rnn.parameters()])
n_enc_param = sum([p.nelement() for p in model.encoder.parameters()])
n_dec_param = sum([p.nelement() for p in model.decoder.parameters()])
print('#rnn params = {}'.format(n_rnn_param))
print('#enc params = {}'.format(n_enc_param))
print('#dec params = {}'.format(n_dec_param))
# Then run interactively
print('Running in interactive mode. Ctrl+c to exit')
if '<unk>' not in corpus.dictionary.word2idx:
print('WARNING: Model does not have unk probabilities.')
try:
while True:
instr = input('Input a sentence: ')
test_sents, test_data = corpus.online_tokenize_with_unks(instr)
try:
test_evaluate(test_sents, test_data)
except:
print("RuntimeError: Most likely one of the input words was out-of-vocabulary.")
print(" Retrain the model with\
A) explicit '<unk>'s in the training set\n \
or B) words in validation that aren't present in training.")
if args.adapt:
with open(args.adapted_model, 'wb') as f:
torch.save(model, f)
except KeyboardInterrupt:
print(' ')
else:
if not args.adapt:
torch.set_grad_enabled(False)
if args.multisentence_test:
test_loss = test_evaluate(None, test_data)
else:
test_loss = test_evaluate(test_sents, test_data)
if args.adapt:
with open(args.adapted_model, 'wb') as f:
torch.save(model, f)
if not args.interact and not args.nopp:
print('=' * 89)
print('| End of testing | test loss {:5.2f} | test ppl {:8.2f}'.format(
test_loss, math.exp(test_loss)))
print('=' * 89)