-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
82 lines (65 loc) · 3.71 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import yaml
import datetime
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
def read_model_file(path, padding, multibranched: bool = False):
with open(path) as model_file:
model_params = yaml.safe_load(model_file)
model_params['param_dataLoader_train']['padding_length'] = padding
model_params['param_dataLoader_valid']['padding_length'] = padding
if multibranched:
for i in range(len(model_params['params_branches'])):
if 'attention' in list(model_params['params_branches'][i].keys()):
for j in range(len(model_params['params_branches'][i]['attention'])):
model_params['params_branches'][i]['attention'][j]['seq_len'] = padding
else:
if 'attention' in list(model_params['params_model'].keys()):
for i in range(len(model_params['params_model']['attention'])):
model_params['params_model']['attention'][i]['seq_len'] = padding
return model_params
def prepare_data(colab: bool = False, path=None):
if path is None:
Warning('Using default local path')
path = '~/Downloads/seq_from_prim_and_icshape_withchrm_no_scaff.m6A.csv'
np.random.seed(3)
if colab:
url = 'https://www.dropbox.com/s/0r8nmwbthhkf2zi/seq_from_prim_and_icshape_withchrm_no_scaff.csv?dl=1'
data_org = pd.read_csv(url)
else:
data_org = pd.read_csv(path)
data_org['struct'] = data_org['struct'].apply(lambda x: np.array(x[1:len(x) - 1].split(', ')))
seq = data_org['seq'].apply(lambda x: len(x))
struc = data_org['struct'].apply(lambda x: x.size)
tmp = seq - struc
data_org = data_org[tmp == 0]
test_data = data_org.sample(frac=0.1)
train_data = data_org.drop(test_data.index)
train_split, valid_split = train_test_split(train_data, random_state=42, test_size=0.2)
return train_split, valid_split, test_data
def set_variables(name: str, max_seq_len, multibranch: bool = False):
model_architecture_path = f'model_architecture_viz/{name}_{datetime.datetime.now().date()}.png'
model_output_path = f'model_outputs/{name}_{datetime.datetime.now().date()}.h5'
params_dict = read_model_file(f'model_architectures/{name}.yaml', max_seq_len, multibranch)
if multibranch:
params_dataLoader_valid = params_dict['param_dataLoader_valid']
params_dataLoader_train = params_dict['param_dataLoader_train']
params_branches = params_dict['params_branches']
params_consensus = params_dict['params_consensus']
params_model = params_dict['params_model']
params_train = params_dict['params_train']
return model_architecture_path, model_output_path, params_dataLoader_train, params_dataLoader_valid, params_branches, params_model, params_consensus, params_train
#return model_architecture_path, model_output_path, params_dataLoader_train, params_dataLoader_valid, params_branches, params_consensus, params_train
#params_train_for_compile = params_dict['params_train_for_compile']
#return model_architecture_path, model_output_path, params_dataLoader_train, params_dataLoader_valid, params_branches, params_consensus, params_train,params_train_for_compile
else:
params_dataLoader_valid = params_dict['param_dataLoader_valid']
params_dataLoader_train = params_dict['param_dataLoader_train']
params_model = params_dict['params_model']
params_train = params_dict['params_train']
return model_architecture_path, model_output_path, params_dataLoader_train, params_dataLoader_valid, params_model, params_train
def extractY(data):
testY = data.iloc[:, 0:9]
sum_vec = testY.sum(axis=1)
testY = testY.divide(sum_vec, axis='index')
return testY