forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_decoder.py
executable file
·61 lines (50 loc) · 1.54 KB
/
test_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/env python3
# Copyright 2021 Xiaomi Corp. (authors: Fangjun Kuang
# Mingshuang Luo)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this file, do:
cd icefall/egs/tedlium3/ASR
python ./pruned_transducer_stateless/test_decoder.py
"""
import torch
from decoder import Decoder
def test_decoder():
vocab_size = 3
blank_id = 0
unk_id = 2
embedding_dim = 128
context_size = 4
decoder = Decoder(
vocab_size=vocab_size,
embedding_dim=embedding_dim,
blank_id=blank_id,
unk_id=unk_id,
context_size=context_size,
)
N = 100
U = 20
x = torch.randint(low=0, high=vocab_size, size=(N, U))
y = decoder(x)
assert y.shape == (N, U, vocab_size)
# for inference
x = torch.randint(low=0, high=vocab_size, size=(N, context_size))
y = decoder(x, need_pad=False)
assert y.shape == (N, 1, vocab_size)
def main():
test_decoder()
if __name__ == "__main__":
main()