-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_lstm.py
179 lines (161 loc) · 6.32 KB
/
train_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Train our RNN on extracted features or images.
"""
import numpy as np
import tensorflow as tf
from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger
from models import ResearchModels
from data import DataSet
import time
import keras
import os.path
import argparse
#from tensorflow import keras
import keras.backend as K
from keras.layers import Dense, Flatten, Dropout, ZeroPadding3D
#from tensorflow.keras.layers.recurrent import LSTM,GRU,SimpleRNN
from keras.layers import LSTM,GRU,SimpleRNN
import stadv
from stn import spatial_transformer_network as transformer
import scipy.misc
from keras.optimizers import Adam
from keras.losses import MSE,KLDivergence
#tf.config.run_functions_eagerly(True)
optimizer = tf.keras.optimizers.SGD(learning_rate=1e-3)
loss_fn = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
train_acc_metric = tf.keras.metrics.CategoricalAccuracy()
val_acc_metric = tf.keras.metrics.CategoricalAccuracy()
batch_size = 32
crop_size = 224
channels = 3
seq_len = 40
features = 2048
indicator = [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
w_init = tf.random_normal_initializer()
rescale=[0.0,255.0]
mean=np.array([0.,0.,0.])
def lstm(inputs,input_shape,nb_classes):
"""Build a simple LSTM network. We pass the extracted features from
our CNN to this model predomenently."""
# Model.
#model = Sequential()
x = LSTM(2048, return_sequences=False,
input_shape=input_shape,
dropout=0.5)(inputs)
x = Dense(512, activation='relu')(x)
x = Dropout(0.5)(x)
outputs = Dense(nb_classes, activation='softmax')(x)
return outputs
def train(path,data_type='features', seq_length=40, model='lstm', saved_model=None,
class_limit=None, image_shape=None,
load_to_memory=False, batch_size=32, nb_epoch=1):
# Helper: Save the model.
filepath=os.path.join('data', 'checkpoints', model + '-' + 'ori' + \
'.{epoch:03d}-{val_loss:.3f}.hdf5')
checkpointer = ModelCheckpoint(
filepath=os.path.join('data', 'checkpoints', model + '-' + 'ori' + \
'.{epoch:03d}-{val_loss:.3f}.hdf5'),verbose=1,
save_best_only=True)
# Helper: TensorBoard
tb = TensorBoard(log_dir=os.path.join('data', 'logs', model))
# Helper: Stop when we stop learning.
early_stopper = EarlyStopping(patience=5)
# Helper: Save results.
timestamp = time.time()
csv_logger = CSVLogger(os.path.join('data', 'logs', model + '-' + 'trainingi2-' + \
str(timestamp) + '.log'))
# Get the data and process it.
if image_shape is None:
data = DataSet(path,
seq_length=seq_length,
class_limit=class_limit
)
else:
data = DataSet(path,
seq_length=seq_length,
class_limit=class_limit,
image_shape=image_shape
)
# Get samples per epoch.
# Multiply by:wq 0.7 to attempt to guess how much of data.data is the train set.
steps_per_epoch = (len(data.data) * 0.7) // batch_size
if load_to_memory:
# Get data.
X, y = data.get_all_sequences_in_memory('train', data_type)
print('X.shape',X.shape)
X_test, y_test = data.get_all_sequences_in_memory('test', data_type)
print('X_test shape is',X_test.shape)
else:
# Get generators.
data_generator = data.frame_generator(batch_size, 'train', data_type)
val_generator = data.frame_generator(batch_size, 'test', data_type)
# Get the model.
input_shape = (seq_length, 2048)
inputs = keras.Input(shape=input_shape)
outputs = lstm(inputs, input_shape,len(data.classes))
model = keras.Model(inputs=inputs, outputs=outputs)
optimizer = Adam(lr=1e-5, decay=1e-6)
metrics = ['top_k_categorical_accuracy']
model.compile(loss='categorical_crossentropy', optimizer=optimizer,
metrics=metrics)
#optimizer = keras.optimizers.SGD(learning_rate=1e-3)
# Instantiate a loss function.
#loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Prepare the metrics.
#train_acc_metric = keras.metrics.SparseCategoricalAccuracy()
#val_acc_metric = keras.metrics.SparseCategoricalAccuracy()
# Prepare the training dataset.
batch_size = 32
# Fit!
if load_to_memory == True:
model.fit(
X,
y,
batch_size=batch_size,
validation_data=(X_test, y_test),
verbose=1,
callbacks=[tb, early_stopper, csv_logger, checkpointer],
epochs=nb_epoch)
else:
# Use fit generator.
model.fit_generator(
generator=data_generator,
steps_per_epoch=steps_per_epoch,
epochs=nb_epoch,
verbose=1,
callbacks=[tb, early_stopper, csv_logger, checkpointer],
validation_data=val_generator,
validation_steps=40,
workers=2)
def main():
"""These are the main training settings. Set each before running
this file."""
parser = argparse.ArgumentParser(description='Use Adam optimizer to generate adversarial examples.')
parser.add_argument('-i', '--input_dir', type=str, required=True,
help='Directory of dataset.')
parser.set_defaults(use_crop=True)
args = parser.parse_args()
# Get the dataset.
#print(args.input_dir)
# model can be one of lstm, lrcn, mlp, conv_3d, c3d
model = 'lstm'
saved_model = None # None or weights file
class_limit = None # int, can be 1-101 or None
seq_length = 40
load_to_memory = True # pre-load the sequences into memory
batch_size = 32
nb_epoch = 500
# Chose images or features and image shape based on network.
if model in ['conv_3d', 'c3d', 'lrcn']:
data_type = 'images'
image_shape = (80, 80, 3)
elif model in ['rnn','gru','lstm', 'mlp']:
data_type = 'features'
image_shape = None
else:
raise ValueError("Invalid model. See train.py for options.")
train(args.input_dir,data_type, seq_length, model=model, saved_model=saved_model,
class_limit=class_limit, image_shape=image_shape,
load_to_memory=load_to_memory, batch_size=batch_size, nb_epoch=nb_epoch)
if __name__ == '__main__':
main()