forked from jjleng/sensei
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.yaml
117 lines (117 loc) · 4.61 KB
/
cluster.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
version: "1.3"
aws:
cluster:
name: sensei # Use a name in lowercase letters with hyphens (kebab-case)
region: us-west-2
nodeType: t3a.medium
minNodes: 2
maxNodes: 4 # These nodes will host serverless functions and other essential loads
prometheus:
enabled: true # Enable metrics scraping with Prometheus
tracing:
enabled: false
mixedModelGroups: # A mixed model group can include both on-demand and spot nodes
- name: mistral-7b-instruct # Specify a name for the model group
nodeType: g6.xlarge
gpu:
enabled: true # This model group runs on GPU-enabled instances
diskSize: 80
baseInstances: 0 # Fail-safe instances, always run on-demand instances
maxOnDemandInstances: 1 # Maximum number of on-demand instances, used as a fallback if spot instances are not available
spot:
minInstances: 1
maxInstances: 1 # Prefer to run the inference backend on spot instances
runtime:
image: vllm/vllm-openai:v0.4.3 # Use vLLM backend
command:
- python3
- -O
- -u
- -m
- vllm.entrypoints.openai.api_server
- --host
- 0.0.0.0
- --served-model-name
- mistral-7b-instruct
- --model
- /data
- --port
- "8000"
- --max-model-len
- "16384"
env:
- name: HF_TOKEN # Required to download model weights from a gated Hugging Face repo
value: <YOUR_HF_TOKEN>!!!!!!!!!!!!!!!!!!!!!!!!!!!
readinessProbe: # Optional. The readiness probe for the runtime image
httpGet: # The HTTP readiness probe
path: /health # The path to check
port: 8000 # The port to check
scheme: HTTP
initialDelaySeconds: 60 # The initial delay before checking
periodSeconds: 5 # The period to check
failureThreshold: 5
successThreshold: 1
timeoutSeconds: 30
model:
hfRepoId: mistralai/Mistral-7B-Instruct-v0.3 # Specify the Hugging Face model to run
useModelStore: true # Don't save models to s3
autoScaleTriggers:
- type: prometheus
metadata:
serverAddress: http://kube-prometheus-stack-prometheus.prometheus.svc.cluster.local:9090 # Prometheus endpoint
metricName: latency_p95
threshold: '20000' # Set to 20s, tune as needed
query: | # Trigger scaling if p95 latency exceeds 20s
histogram_quantile(0.95, sum(rate(istio_request_duration_milliseconds_bucket{destination_service="mistral-7b-instruct.default.svc.cluster.local"}[5m])) by (le))
modelGroups:
- name: command-r # Specify a name for the model group
nodeType: g6.12xlarge
gpu:
enabled: true # This model group runs on GPU-enabled instances
diskSize: 110
minInstances: 1
maxInstances: 1
runtime:
image: vllm/vllm-openai:v0.4.3 # Use vLLM backend
command:
- python3
- -O
- -u
- -m
- vllm.entrypoints.openai.api_server
- --host
- 0.0.0.0
- --served-model-name
- command-r
- --model
- /data
- --port
- "8000"
- --max-model-len
- "30000"
- --tensor-parallel-size
- "4"
env:
- name: HF_TOKEN # Required to download model weights from a gated Hugging Face repo
value: <YOUR_HF_TOKEN>!!!!!!!!!!!!!!!!!!!!!!!!!!!
readinessProbe: # Optional. The readiness probe for the runtime image
httpGet: # The HTTP readiness probe
path: /health # The path to check
port: 8000 # The port to check
scheme: HTTP
initialDelaySeconds: 60 # The initial delay before checking
periodSeconds: 5 # The period to check
failureThreshold: 5
successThreshold: 1
timeoutSeconds: 30
model:
hfRepoId: TechxGenus/c4ai-command-r-v01-GPTQ # Specify the Hugging Face model to run
useModelStore: true # Don't save models to s3
autoScaleTriggers:
- type: prometheus
metadata:
serverAddress: http://kube-prometheus-stack-prometheus.prometheus.svc.cluster.local:9090 # Prometheus endpoint
metricName: latency_p95
threshold: '20000' # Set to 20s, tune as needed
query: | # Trigger scaling if p95 latency exceeds 20s
histogram_quantile(0.95, sum(rate(istio_request_duration_milliseconds_bucket{destination_service="command-r.default.svc.cluster.local"}[5m])) by (le))