-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patheval.py
176 lines (130 loc) · 5.83 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import BatchSampler, RandomSampler
from torch.nn.utils.rnn import pad_sequence
from torch.autograd import Variable
import pandas as pd
import numpy as np
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
from datasets import load_dataset
from tqdm import tqdm
import argparse
### general settings or functions
# print args
def print_args(args):
args_dict = vars(args)
for arg_name, arg_value in sorted(args_dict.items()):
print(f"\t{arg_name}: {arg_value}")
# dataloader batch_fn setting
def custom_collate(data):
sentences = [d['sentences'] for d in data]
input_ids = [torch.tensor(d['input_ids']) for d in data]
labels = [d['labels'] for d in data]
token_type_ids = [torch.tensor(d['token_type_ids']) for d in data]
attention_mask = [torch.tensor(d['attention_mask']) for d in data]
input_ids = pad_sequence(input_ids, batch_first=True)
labels = torch.tensor(labels)
token_type_ids = pad_sequence(token_type_ids, batch_first=True)
attention_mask = pad_sequence(attention_mask, batch_first=True)
return {
'sentences': sentences,
'input_ids': input_ids,
'labels': labels,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask
}
def to_var(x, requires_grad=False):
"""
Varialbe type that automatically choose cpu or cuda
"""
if torch.cuda.is_available():
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
### Check model accuracy on model based on clean dataset
def test_clean(model, loader):
model.eval()
num_correct, num_samples = 0, len(loader.dataset)
for idx, data in enumerate(tqdm(loader)):
# for idx, data in enumerate(loader):
x_var = to_var(data['input_ids'])
x_mask = to_var(data['attention_mask'])
# x_var = to_var(**data)
label = data['labels']
# print(label)
scores = model(x_var, x_mask).logits
_, preds = scores.data.cpu().max(1)
num_correct += (preds == label).sum()
acc = float(num_correct)/float(num_samples)
print('Got %d/%d correct (%.2f%%) on the clean data'
% (num_correct, num_samples, 100 * acc))
return acc
### Check model accuracy on model based on triggered dataset
def test_trigger(model, loader, target, batch):
model.eval()
num_correct, num_samples = 0, len(loader.dataset)
label = torch.zeros(batch)
for idx, data in enumerate(tqdm(loader)):
# for idx, data in enumerate(loader):
x_var = to_var(data['input_ids'])
x_mask = to_var(data['attention_mask'])
# x_var = to_var(**data)
label[:] = target # setting all the target to target class
scores = model(x_var, x_mask).logits
_, preds = scores.data.cpu().max(1)
num_correct += (preds == label).sum()
acc = float(num_correct)/float(num_samples)
print('Got %d/%d correct (%.2f%%) on the triggered data'
% (num_correct, num_samples, 100 * acc))
return acc
### main()
def main(args):
clean_dataset = load_dataset('csv', data_files=args.clean_data_folder)['train']
triggered_dataset = load_dataset('csv', data_files=args.triggered_data_folder)['train']
clean_dataset = clean_dataset.select(range(datanum1))
triggered_dataset = triggered_dataset.select(range(datanum1))
## Load tokenizer, model
tokenizer = AutoTokenizer.from_pretrained(args.model, use_fast=True)
tokenizer.model_max_length = 256
model = AutoModelForSequenceClassification.from_pretrained(args.model, num_labels=args.label_num).cuda()
model.load_state_dict(torch.load(args.poisoned_model)) # load poisoned model parameters
## encode dataset using tokenizer
preprocess_function = lambda examples: tokenizer(examples['sentences'],max_length=256,truncation=True,padding="max_length")
encoded_clean_dataset = clean_dataset.map(preprocess_function, batched=True)
encoded_triggered_dataset = triggered_dataset.map(preprocess_function, batched=True)
## load data and set batch
clean_dataloader = DataLoader(dataset=encoded_clean_dataset,batch_size=args.batch,shuffle=False,drop_last=False,collate_fn=custom_collate)
triggered_dataloader = DataLoader(dataset=encoded_triggered_dataset,batch_size=args.batch,shuffle=False,drop_last=False,collate_fn=custom_collate)
asr = test_trigger(model,triggered_dataloader,args.target,args.batch)
print('attack succesfull rate:')
print(asr)
ta = test_clean(model,clean_dataloader)
print('test succesfull rate:')
print(ta)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Model poison.")
# data
parser.add_argument("--clean_data_folder", default='data/clean/ag/test.csv', type=str,
help="folder in which storing clean data")
parser.add_argument("--triggered_data_folder", default='data/triggered/test.csv', type=str,
help="folder in which to store triggered data")
parser.add_argument("--label_num", default=4, type=int,
help="label numbers")
parser.add_argument("--datanum", default=0, type=int,
help="data number")
# model
parser.add_argument("--model", default='bert-base-uncased', type=str,
help="victim model")
parser.add_argument("--poisoned_model", default='', type=str,
help="poisoned model path and name")
parser.add_argument("--batch", default=2, type=int,
help="training batch")
parser.add_argument("--target", default=2, type=int,
help="target attack catgory")
args = parser.parse_args()
print_args(args)
main(args)