Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MNIST demo, make_dgp ValueError: #36

Open
Mirgahney opened this issue Feb 18, 2019 · 1 comment
Open

MNIST demo, make_dgp ValueError: #36

Mirgahney opened this issue Feb 18, 2019 · 1 comment

Comments

@Mirgahney
Copy link

Hello Hugh,

I have encountered the following error when I'm running MNIST_demo notebook, more specifically one running.

m_sgp = SVGP(X, Y, RBF(784, lengthscales=2., variance=2.), MultiClass(10), 
             Z=Z, num_latent=10, minibatch_size=1000, whiten=True)

def make_dgp(L):
    kernels = [RBF(784, lengthscales=2., variance=2.)]
    for l in range(L-1):
        kernels.append(RBF(30, lengthscales=2., variance=2.))
    model = DGP(X, Y, Z, kernels, MultiClass(10), 
                minibatch_size=1000,
                num_outputs=10)
    
    # start things deterministic 
    for layer in model.layers[:-1]:
        layer.q_sqrt = layer.q_sqrt.value * 1e-5 
    
    return model

-->m_dgp2 = make_dgp(2)
m_dgp3 = make_dgp(3)

The error:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-3-1d4261b29a37> in <module>()
     16     return model
     17 
---> 18 m_dgp2 = make_dgp(2)
     19 m_dgp3 = make_dgp(3)

<ipython-input-3-1d4261b29a37> in make_dgp(L)
      8     model = DGP(X, Y, Z, kernels, MultiClass(10), 
      9                 minibatch_size=1000,
---> 10                 num_outputs=10)
     11 
     12     # start things deterministic

\Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs)
     84                     break
     85                 frame = frame.f_back
---> 86             origin_init(self, *args, **kwargs)
     87             autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD
     88             global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__

\Anaconda3\lib\site-packages\doubly_stochastic_dgp-1.0-py3.6.egg\doubly_stochastic_dgp\dgp.py in __init__(self, X, Y, Z, kernels, likelihood, num_outputs, mean_function, white, **kwargs)
    189                                     num_outputs=num_outputs,
    190                                     mean_function=mean_function,
--> 191                                     white=white)
    192         DGP_Base.__init__(self, X, Y, likelihood, layers, **kwargs)
    193 

\Anaconda3\lib\site-packages\doubly_stochastic_dgp-1.0-py3.6.egg\doubly_stochastic_dgp\layer_initializations.py in init_layers_linear(X, Y, Z, kernels, num_outputs, mean_function, Layer, white)
     42             mf.set_trainable(False)
     43 
---> 44         layers.append(Layer(kern_in, Z_running, dim_out, mf, white=white))
     45 
     46         if dim_in != dim_out:

\Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs)
     84                     break
     85                 frame = frame.f_back
---> 86             origin_init(self, *args, **kwargs)
     87             autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD
     88             global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__

\Anaconda3\lib\site-packages\doubly_stochastic_dgp-1.0-py3.6.egg\doubly_stochastic_dgp\layers.py in __init__(self, kern, num_outputs, mean_function, Z, feature, white, input_prop_dim, q_mu, q_sqrt, **kwargs)
    149         Layer.__init__(self, input_prop_dim, **kwargs)
    150         if feature is None:
--> 151             feature = InducingPoints(Z)
    152 
    153         self.num_inducing = len(feature)

\Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs)
     84                     break
     85                 frame = frame.f_back
---> 86             origin_init(self, *args, **kwargs)
     87             autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD
     88             global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__

\Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs)
     84                     break
     85                 frame = frame.f_back
---> 86             origin_init(self, *args, **kwargs)
     87             autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD
     88             global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__

\Anaconda3\lib\site-packages\gpflow\features.py in __init__(self, Z)
     76         """
     77         super().__init__()
---> 78         self.Z = Parameter(Z, dtype=settings.float_type)
     79 
     80     def __len__(self):

\Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs)
     84                     break
     85                 frame = frame.f_back
---> 86             origin_init(self, *args, **kwargs)
     87             autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD
     88             global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__

\Anaconda3\lib\site-packages\gpflow\params\parameter.py in __init__(self, value, transform, prior, trainable, dtype, fix_shape, name)
    136         self._externally_defined = False
    137         self._fixed_shape = fix_shape
--> 138         value = self._valid_input(value, dtype=dtype)
    139 
    140         super().__init__(name)

\Anaconda3\lib\site-packages\gpflow\params\parameter.py in _valid_input(self, value, dtype)
    312         if not misc.is_valid_param_value(value):
    313             msg = 'The value must be either a tensorflow variable, an array or a scalar.'
--> 314             raise ValueError(msg)
    315         cast = not (dtype is None)
    316         is_built = False

ValueError: The value must be either a tensorflow variable, an array or a scalar.
@hughsalimbeni
Copy link
Collaborator

Thanks for noticing this. I think it is a compatibility issue with gpflow1.1, but I need to investigate. Do you get this error with gpflow1.0?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants