We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Hello Hugh,
I have encountered the following error when I'm running MNIST_demo notebook, more specifically one running.
m_sgp = SVGP(X, Y, RBF(784, lengthscales=2., variance=2.), MultiClass(10), Z=Z, num_latent=10, minibatch_size=1000, whiten=True) def make_dgp(L): kernels = [RBF(784, lengthscales=2., variance=2.)] for l in range(L-1): kernels.append(RBF(30, lengthscales=2., variance=2.)) model = DGP(X, Y, Z, kernels, MultiClass(10), minibatch_size=1000, num_outputs=10) # start things deterministic for layer in model.layers[:-1]: layer.q_sqrt = layer.q_sqrt.value * 1e-5 return model -->m_dgp2 = make_dgp(2) m_dgp3 = make_dgp(3)
The error:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-3-1d4261b29a37> in <module>() 16 return model 17 ---> 18 m_dgp2 = make_dgp(2) 19 m_dgp3 = make_dgp(3) <ipython-input-3-1d4261b29a37> in make_dgp(L) 8 model = DGP(X, Y, Z, kernels, MultiClass(10), 9 minibatch_size=1000, ---> 10 num_outputs=10) 11 12 # start things deterministic \Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs) 84 break 85 frame = frame.f_back ---> 86 origin_init(self, *args, **kwargs) 87 autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD 88 global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__ \Anaconda3\lib\site-packages\doubly_stochastic_dgp-1.0-py3.6.egg\doubly_stochastic_dgp\dgp.py in __init__(self, X, Y, Z, kernels, likelihood, num_outputs, mean_function, white, **kwargs) 189 num_outputs=num_outputs, 190 mean_function=mean_function, --> 191 white=white) 192 DGP_Base.__init__(self, X, Y, likelihood, layers, **kwargs) 193 \Anaconda3\lib\site-packages\doubly_stochastic_dgp-1.0-py3.6.egg\doubly_stochastic_dgp\layer_initializations.py in init_layers_linear(X, Y, Z, kernels, num_outputs, mean_function, Layer, white) 42 mf.set_trainable(False) 43 ---> 44 layers.append(Layer(kern_in, Z_running, dim_out, mf, white=white)) 45 46 if dim_in != dim_out: \Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs) 84 break 85 frame = frame.f_back ---> 86 origin_init(self, *args, **kwargs) 87 autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD 88 global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__ \Anaconda3\lib\site-packages\doubly_stochastic_dgp-1.0-py3.6.egg\doubly_stochastic_dgp\layers.py in __init__(self, kern, num_outputs, mean_function, Z, feature, white, input_prop_dim, q_mu, q_sqrt, **kwargs) 149 Layer.__init__(self, input_prop_dim, **kwargs) 150 if feature is None: --> 151 feature = InducingPoints(Z) 152 153 self.num_inducing = len(feature) \Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs) 84 break 85 frame = frame.f_back ---> 86 origin_init(self, *args, **kwargs) 87 autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD 88 global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__ \Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs) 84 break 85 frame = frame.f_back ---> 86 origin_init(self, *args, **kwargs) 87 autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD 88 global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__ \Anaconda3\lib\site-packages\gpflow\features.py in __init__(self, Z) 76 """ 77 super().__init__() ---> 78 self.Z = Parameter(Z, dtype=settings.float_type) 79 80 def __len__(self): \Anaconda3\lib\site-packages\gpflow\core\compilable.py in __init__(self, *args, **kwargs) 84 break 85 frame = frame.f_back ---> 86 origin_init(self, *args, **kwargs) 87 autobuild_on = __execute_autobuild__ == AutoBuildStatus.BUILD 88 global_autobuild_on = AutoBuildStatus.__autobuild_enabled_global__ \Anaconda3\lib\site-packages\gpflow\params\parameter.py in __init__(self, value, transform, prior, trainable, dtype, fix_shape, name) 136 self._externally_defined = False 137 self._fixed_shape = fix_shape --> 138 value = self._valid_input(value, dtype=dtype) 139 140 super().__init__(name) \Anaconda3\lib\site-packages\gpflow\params\parameter.py in _valid_input(self, value, dtype) 312 if not misc.is_valid_param_value(value): 313 msg = 'The value must be either a tensorflow variable, an array or a scalar.' --> 314 raise ValueError(msg) 315 cast = not (dtype is None) 316 is_built = False ValueError: The value must be either a tensorflow variable, an array or a scalar.
The text was updated successfully, but these errors were encountered:
Thanks for noticing this. I think it is a compatibility issue with gpflow1.1, but I need to investigate. Do you get this error with gpflow1.0?
Sorry, something went wrong.
No branches or pull requests
Hello Hugh,
I have encountered the following error when I'm running MNIST_demo notebook, more specifically one running.
The error:
The text was updated successfully, but these errors were encountered: