Skip to content

Latest commit

 

History

History
33 lines (20 loc) · 898 Bytes

DATASET.md

File metadata and controls

33 lines (20 loc) · 898 Bytes

Dataset Preparation

Thank to Pytorch, we can use most datasets by:

train_set = torchvision.datasets.cifar100(root, Train = True, transforms = transforms)
val_set = torchvision.datasets.cifar100(root, Train = False, transforms = transforms_test)

There are some datasets need special care:

DMLab:

DMLab is the dataset from tensorflow datasets, so you can import it from tensorflow datasets, and then transform it to pytorch version.

# DMLab 
ds_train = tfds.load(name="dmlab", split="train", as_supervised=True)
ds_test = tfds.load(name="dmlab", split="test", as_supervised=True)

Resisc45:

You can download Resisc45 dataset here: http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html

CLEVR:

You can download CLEVR dataset here: https://cs.stanford.edu/people/jcjohns/clevr/

Also, you can also prepare above datasets from tensorflow datasets.