-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathss_b1verse.m
238 lines (194 loc) · 5.84 KB
/
ss_b1verse.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
function [rfv, gv] = ss_b1verse(g, rf, b1max, gmax, smax, ts, gamma, slew_penalty, dbg);
% [rfv, gv] = ss_b1verse(g, rf, b1max, gmax, smax, ts, gamma, slew_penalty, dbg)
%
% Use VERSE to reduce maximum RF amplitude while retaining an
% identical pulse duration.
% Input RF and gradient must correspond (ie RF should be once VERSE'd if
% gradient is varying).
% A slew rate penalty that reduces the allowable slew rate for larger RF
% amplitudes is also implemented with the slew_penalty variable that
% determines the degree of this penalty.
%
% INPUTS:
% g - gradient in G/cm
% rf - scaled as per rftools (sum(rf) = flip)
% b1max - max RF
% gmax - max gradient, in G/cm
% smax - max slew rate, in G/cm/ms
% ts - sampling interval, in sec
% gamma - gyromagnetic ratio, in Hz/G
% slew_penalty (optional) - degree of slew rate reduction
% default is 0 (no penalty)
% dbg (optional) - indicates debug level
%
% OUTPUTS:
% rfv - versed RF
% gv - new gradient
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Spectral-Spatial RF Pulse Design for MRI and MRSI MATLAB Package
%
% Authors: Adam B. Kerr and Peder E. Z. Larson
%
% (c)2007-2011 Board of Trustees, Leland Stanford Junior University and
% The Regents of the University of California.
% All Rights Reserved.
%
% Please see the Copyright_Information and README files included with this
% package. All works derived from this package must be properly cited.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% TODO:
% - allow negative gradients
if nargin < 8
slew_penalty = 0;
end
if nargin < 9
dbg = 0;
end
if length(g) == 1
g = g*ones(size(rf));
end
if length(b1max) == 1
b1max = b1max*ones(size(rf));
end
dt = ts*ones(size(rf));
t_unif = ([0:length(rf)-1] + 0.5) * ts;
dt_unif = dt;
S_rfg = 1 / (2*pi*gamma*ts);
% convert to Gauss
if dbg >= 2
rfg = rf *S_rfg;
fprintf('Initial Max RF fraction: %f\n', max(abs(rfg) ./ b1max));
end
T = sum(dt);
notdone = 1;
% maxiter may not be necessary because
% the routine should either fail or succeed at some point
niter = 0;
maxiter = 100;
%area = sum(g);
while (niter < maxiter)
niter = niter + 1;
Imaxed = zeros(size(rf));
Islewed = zeros(size(rf));
% fix points with zero gradient
Islewed(find(g==0)) = 1;
% fix endpoints
Islewed([1,end]) = 1;
if dbg >= 2
figure(99)
subplot(311)
plot(cumsum(dt),g)
subplot(312)
plot(cumsum(dt),abs(rf) / (2*pi*gamma*ts))
subplot(313)
plot(cumsum(dt),diff(g) ./ ((dt(1:end-1) + dt(2:end))/2))
pause
end
b = ones(1,5)/5;
b =firls(8, [0 .03 .06 1], [1 1 0 0]);
rffilt = filtfilt(b, 1, abs(rf)) / (sum(b)^2);
rffilt = max(abs(rf), rffilt);
% rffilt = abs(rf);
filtmax = max( max(abs(rffilt)), max(b1max)/S_rfg);
s_mod = (1 - 0.999*rffilt/filtmax) .^slew_penalty;
% s_mod = (1 - 0.999*abs(rf)/max(abs(rf))) .^slew_penalty;
% s_mod = (tanh((slew_penalty(1) - rffilt/filtmax) * slew_penalty(2)) + 1 ) / 2;
smax_mod = smax*1e3 * s_mod;
% Go through gradient forward looking for slew-rate violations
for k = 2:length(rf)
slew = (g(k) - g(k-1)) / (dt(k) + dt(k-1)) / 0.5;
if 1
smaxk = smax*1e3 * ...
(1 - (abs(rffilt(k)) + abs(rffilt(k-1)))*S_rfg / (b1max(k)+b1max(k-1)) )^slew_penalty;
else
smaxk = smax_mod(k);
end
if (slew > smaxk )
gh = g(k); gl = g(k-1);
dth = dt(k); dtl = dt(k-1);
a = smax_mod(k) * dth;
b = smax_mod(k) * dtl + 2*gl;
c = -2*gh;
scale = (-b + sqrt(b^2-4*a*c))/(2*a);
rf(k) = rf(k) / scale;
g(k) = g(k) / scale;
dt(k) = dt(k) * scale;
Islewed(k) = 1;
end
end
% Go through gradient in reverse looking for slew-rate violations
for k = length(rf)-1:-1:1
slew = (g(k) - g(k+1)) / (dt(k) + dt(k+1)) / 0.5;
if 1
smaxk = smax*1e3 * ...
(1 - (abs(rffilt(k)) + abs(rffilt(k+1)))*S_rfg / (b1max(k) + b1max(k+1)) )^slew_penalty;
else
smaxk = smax_mod(k);
end
if (slew > smaxk)
gh = g(k); gl = g(k+1);
dth = dt(k); dtl = dt(k+1);
a = smax_mod(k) * dth;
b = smax_mod(k) * dtl + 2*gl;
c = -2*gh;
scale = (-b + sqrt(b^2-4*a*c))/(2*a);
rf(k) = rf(k) / scale;
g(k) = g(k) / scale;
dt(k) = dt(k) * scale;
Islewed(k) = 1;
end
end
% Check for violoations of max RF
for k = 1:length(rf)
rfscale = abs(rf(k)) * S_rfg / (b1max(k)*.999);
if (rfscale > 1)
rf(k) = rf(k) / rfscale;
g(k) = g(k) / rfscale;
dt(k) = dt(k) * rfscale;
Imaxed(k) = 1;
end
end
% compensate for time expansion in removing max RF and slew
% rate violations by shrinking other time samples and increasing
% RF and gradient correspondingly
Ifixed = find(Imaxed | Islewed);
Ishrink = find(~(Imaxed | Islewed));
shrink_scale = (T - sum(dt(Ifixed))) / sum(dt(Ishrink));
% Check if pulse exceeds length requirement
if shrink_scale < 0
% error('ss_verse: RF pulse unrealizeable');
rfv = [];
gv = [];
return;
elseif (abs(shrink_scale-1) < 1e-14) || (isempty(Imaxed) && isempty(Islewed))
% DONE!
notdone = 0;
else
rf(Ishrink) = rf(Ishrink) / shrink_scale;
g(Ishrink) = g(Ishrink) / shrink_scale ;
dt(Ishrink) = dt(Ishrink) * shrink_scale;
% timepoints at center of little hard pulses
t = cumsum([0, dt(1:end-1)]) + dt/2;
rf = interp1(t, rf, t_unif, 'spline', 'extrap');
g = interp1(t, g, t_unif, 'spline', 'extrap');
% g = g/sum(g) * area;
dt = dt_unif;
end
niter = niter + 1;
end
% check if gradient limits exceeded
gscale = abs(g) / gmax;
if max(gscale) > 1
%error('ss_verse: RF pulse unrealizeable');
rfv = [];
gv = [];
return;
end
rfv = rf;
gv = g;
if dbg >= 2
rfvg = rfv*S_rfg;
fprintf('Final Max RF fraction: %f\n', max(abs(rfvg) ./ b1max));
end