-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval_create_qrels.py
62 lines (47 loc) · 1.77 KB
/
retrieval_create_qrels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import json
import logging
from collections import defaultdict
from dataclasses import dataclass, field
from logging.config import fileConfig
from pathlib import Path
import pandas as pd
import simple_parsing
fileConfig("logging.ini")
logger = logging.getLogger(__name__)
@dataclass
class Args:
papers_file: Path = field(default=Path("data/papers.jsonl"))
qa_file: Path = field(default=Path("data/qa.jsonl"))
output_dir: Path = field(default=Path("out"))
def main(args):
# data loading
qa_df = pd.read_json(args.qa_file, lines=True)
papers_df = pd.read_json(args.papers_file, lines=True)
paragraph_qrels = defaultdict(dict)
sentence_qrels = defaultdict(dict)
for _, qa in qa_df.iterrows():
if qa.answer_evidence_mapped is None:
# No Answer Evidence has been annotated for this Question
continue
qidx = qa.question_id
for ae in qa.answer_evidence_mapped:
lidx = ae["idx"]
for idx in lidx:
if idx is None:
# Answer evidence that has no match in the extracted text
continue
pidx, sidx = papers_df[
(papers_df.paper_id == qa.paper_id) & (papers_df.idx == idx)
][["pidx", "sidx"]].values[0]
paragraph_qrels[qidx][str(pidx)] = 1
sentence_qrels[qidx][f"{pidx}/{sidx}"] = 1
args.output_dir.mkdir(parents=True, exist_ok=True)
for name, qrels in zip(
["sentences", "paragraphs"], [sentence_qrels, paragraph_qrels]
):
with open(args.output_dir / f"qrels.{name}.json", "w") as f:
json.dump(qrels, f, indent=2)
if __name__ == "__main__":
args, _ = simple_parsing.parse_known_args(Args)
logger.info(args)
main(args)