-
Notifications
You must be signed in to change notification settings - Fork 0
/
evalModel.py
executable file
·180 lines (148 loc) · 6.12 KB
/
evalModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python
'''
CREATED:2012-03-27 20:48:48 by Brian McFee <bmcfee@cs.ucsd.edu>
Model evaluator
Usage:
./evalModel.py results_OUT.pickle model_IN.pickle /path/to/playlist/directory [-s] [-u]
'''
import argparse
import sys
import glob, os
import cPickle as pickle
import hypergraph
import numpy
def processArguments():
parser = argparse.ArgumentParser(description='Playlist model evalutron')
parser.add_argument( 'results_out',
nargs = 1,
help = 'Path to results output')
parser.add_argument( 'model_in',
nargs = 1,
help = 'Path to model input')
parser.add_argument( 'playlist_dir',
nargs = 1,
help = 'Path to playlist directory')
parser.add_argument( '-a',
nargs = 1,
type = float,
default = 1.0,
required = False,
dest = 'a',
help = 'Alpha (shape) parameter for weight prior (default=1.0)')
parser.add_argument( '-l',
nargs = '+',
type = float,
default = [1e0],
required = False,
dest = 'lam',
help = 'List of lambda (scale) parameters for weight prior (default=1e0)')
parser.add_argument( '-d',
nargs = 1,
type = int,
default = -1,
required = False,
dest = 'DEBUG',
help = 'Debug level (-1,0,1,2) (default=-1')
parser.add_argument( '-m',
nargs = 1,
type = int,
default = 30,
required = False,
dest = 'm',
help = 'L-BFGS basis size (default=30)')
parser.add_argument( '-s',
required = False,
dest = 'markov',
default = True,
action = 'store_false',
help = 'Learn stationary edge weights')
parser.add_argument( '-v',
required = False,
dest = 'val',
default = 0.00,
type = float,
help = '% of data to use for validation (default: 0.0)')
parser.add_argument( '-u',
required = False,
dest = 'weighted',
default = True,
action = 'store_false',
help = 'Evaluate uniform edge weights')
return vars(parser.parse_args(sys.argv[1:]))
def loadModel(params):
with open(params['model_in'], 'r') as f: # orig: with open(params['model_in'][0], 'r') as f:
G = pickle.load(f)['G']
pass
return G
def getFiles(params, suffix):
"""
Generator to walk a basedir and grab all files of the specified extension
"""
F = glob.glob(os.path.join(params['playlist_dir'], '*_'+suffix+'.pickle'))
F.sort()
for f in F:
with open(os.path.abspath(f), 'r') as infile:
P = pickle.load(infile) # list of lists/folds of song IDs in fold
pass
yield (P, os.path.basename(f).replace('_'+suffix+'.pickle',''))
pass
def evaluateModel(params):
weights = {}
scores = {}
# 1: load the model
print('Loading model...')
G = loadModel(params)
# Reset edge weights
G.unlearn()
print(G.getWeights())
## P is list of lists/folds of song IDs in fold
for (P, name) in getFiles(params, 'train'):
nFolds = len(P)
print('Training on %20s... ' % name)
weights[name] = [None] * nFolds # add name to weights
## a P[fold] here should be at least 2 dimensional?
for fold in xrange(nFolds):
if params['weighted']:
G.learn(P[fold],
MARKOV = params['markov'],
a = params['a'],
lam = params['lam'],
DEBUG = params['DEBUG'],
m = params['m'],
val = params['val'])
pass
weights[name][fold] = G.getWeights()
scores[name] = {}
print(' done.')
pass
print(G.getWeights())
## P is list of lists/folds of song IDs in fold
for (P, name) in getFiles(params, 'test'):
#print(P)
nFolds = len(P)
K = list(set(['ALL', name]))
K.sort()
for trainDist in K:
if trainDist == 'ALL':
continue
print('Testing G(%20s) on %20s\t' % (trainDist, name))
s = numpy.zeros(nFolds) # vec of avg liklihood
for fold in xrange(nFolds):
G.setWeights(weights[name][fold])
s[fold] = G.avglikelihood(P[fold], MARKOV=params['markov'])
pass
scores[trainDist][name] = s
for i in s:
print("avg LL at this fold: ");print(i)
print('LL: %.4f +- %.4f' % (numpy.mean(s), numpy.std(s)))
pass
pass
results = {'weights': weights, 'scores': scores, 'params': params}
return results
if __name__ == '__main__':
params = processArguments()
results = evaluateModel(params)
with open(params['results_out'][0], 'w') as f:
pickle.dump(results, f)
pass
pass