forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_cpp_codegen.cpp
57 lines (48 loc) · 1.52 KB
/
test_cpp_codegen.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <gtest/gtest.h>
#include <test/cpp/tensorexpr/test_base.h>
#include <torch/csrc/jit/testing/file_check.h>
#include "torch/csrc/jit/tensorexpr/cpp_codegen.h"
#include "torch/csrc/jit/tensorexpr/mem_arena.h"
#include "torch/csrc/jit/tensorexpr/stmt.h"
namespace torch {
namespace jit {
using namespace torch::jit::tensorexpr;
TEST(CppPrinter, AllocateOnStackThenFree) {
constexpr int dim0 = 2, dim1 = 3;
KernelScope kernel_scope;
VarHandle var("x", kHandle);
Allocate* alloc = Allocate::make(var, kInt, {dim0, dim1});
Free* free = Free::make(var);
Block* block = Block::make({alloc, free});
std::stringstream ss;
CppPrinter printer(&ss);
printer.visit(block);
const std::string expected = R"(
# CHECK: {
# CHECK: int x[6];
# CHECK: }
)";
torch::jit::testing::FileCheck().run(expected, ss.str());
}
TEST(CppPrinter, AllocateOnHeapThenFree) {
constexpr int dim0 = 20, dim1 = 50, dim2 = 3;
KernelScope kernel_scope;
VarHandle var("y", kHandle);
Allocate* alloc = Allocate::make(var, kLong, {dim0, dim1, dim2});
Free* free = Free::make(var);
Block* block = Block::make({alloc, free});
std::stringstream ss;
CppPrinter printer(&ss);
printer.visit(block);
// size(long) = 8;
// dim0 * dim1 * dim2 * size(long) = 24000.
const std::string expected = R"(
# CHECK: {
# CHECK: int64_t* y = static_cast<int64_t*>(malloc(24000));
# CHECK: free(y);
# CHECK: }
)";
torch::jit::testing::FileCheck().run(expected, ss.str());
}
} // namespace jit
} // namespace torch