The aphylo
R package implements estimation and data imputation methods
for Functional Annotations in Phylogenetic Trees. The core function
consists of the log-likelihood computation of observing a given
phylogenetic tree with functional annotation on its leaves and the
probabilities associated to gain and loss of function, including
probabilities of experimental misclassification. The log-likelihood is
computed using peeling algorithms, which required developing and
implementing efficient algorithms for re-coding and preparing
phylogenetic tree data to be used with the package. Finally, aphylo
works smoothly with popular tools for analysis of phylogenetic data such
as ape
R package, “Analyses of Phylogenetics and Evolution.”
The package is under MIT License and is developed by the Computing and Software Cores of the Biostatistics Division’s NIH Project Grant (P01) at the Department of Preventive Medicine at the University of Southern California.
citation(package="aphylo")
To cite aphylo in publications use the following paper:
Vega Yon GG, Thomas DC, Morrison J, Mi H, Thomas PD, et al. (2021)
Bayesian parameter estimation for automatic annotation of gene
functions using observational data and phylogenetic trees. PLOS
Computational Biology 17(2): e1007948.
https://doi.org/10.1371/journal.pcbi.1007948
And the actual R package:
Vega Yon G (2022). _Statistical Inference of Annotated Phylogenetic
Trees_. R package version 0.3-2,
<https://github.com/USCBiostats/aphylo>.
To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.
This package depends on another on-development R package, the
fmcmc
. So first, you need to
install it:
devtools::install_github("USCbiostats/fmcmc")
Then you can install the aphylo
package
devtools::install_github("USCbiostats/aphylo")
library(aphylo)
Loading required package: ape
# This datasets are included in the package
data("fakeexperiment")
data("faketree")
head(fakeexperiment)
LeafId f1 f2
[1,] 1 0 0
[2,] 2 0 1
[3,] 3 1 0
[4,] 4 1 1
head(faketree)
ParentId NodeId
[1,] 6 1
[2,] 6 2
[3,] 7 3
[4,] 7 4
[5,] 5 6
[6,] 5 7
O <- new_aphylo(
tip.annotation = fakeexperiment[,2:3],
tree = as.phylo(faketree)
)
O
Phylogenetic tree with 4 tips and 3 internal nodes.
Tip labels:
1, 2, 3, 4
Node labels:
5, 6, 7
Rooted; no branch lengths.
Tip (leafs) annotations:
f1 f2
1 0 0
2 0 1
3 1 0
4 1 1
Internal node annotations:
f1 f2
5 9 9
6 9 9
7 9 9
as.phylo(O)
Phylogenetic tree with 4 tips and 3 internal nodes.
Tip labels:
1, 2, 3, 4
Node labels:
5, 6, 7
Rooted; no branch lengths.
# We can visualize it
plot(O)
plot_logLik(O)
set.seed(198)
dat <- raphylo(
50,
P = 1,
psi = c(0.05, 0.05),
mu_d = c(0.8, 0.3),
mu_s = c(0.1, 0.1),
Pi = .4
)
dat
Phylogenetic tree with 50 tips and 49 internal nodes.
Tip labels:
1, 2, 3, 4, 5, 6, ...
Node labels:
51, 52, 53, 54, 55, 56, ...
Rooted; no branch lengths.
Tip (leafs) annotations:
fun0000
1 1
2 0
3 0
4 1
5 0
6 0
...(44 obs. omitted)...
Internal node annotations:
fun0000
1 1
2 1
3 1
4 1
5 1
6 0
...(43 obs. omitted)...
# Parameters and data
psi <- c(0.020,0.010)
mu_d <- c(0.40,.10)
mu_s <- c(0.04,.01)
eta <- c(.7, .9)
pi_root <- .05
# Computing likelihood
str(LogLike(dat, psi = psi, mu_d = mu_d, mu_s = mu_s, eta = eta, Pi = pi_root))
List of 2
$ Pr:List of 1
..$ : num [1:99, 1:2] 0.018 0.686 0.686 0.018 0.686 0.686 0.018 0.018 0.018 0.686 ...
$ ll: num -40.4
# Using L-BFGS-B (MLE) to get an initial guess
ans0 <- aphylo_mle(dat ~ psi + mu_d + Pi + eta)
# MCMC method
ans2 <- aphylo_mcmc(
dat ~ mu_d + mu_s + Pi,
prior = bprior(c(9, 1, 1, 1, 5), c(1, 9, 9, 9, 5)),
control = list(nsteps=5e3, burnin=500, thin=10, nchains=2))
Warning: While using multiple chains, a single initial point has been passed
via `initial`: c(0.9, 0.5, 0.1, 0.05, 0.5). The values will be recycled.
Ideally you would want to start each chain from different locations.
Convergence has been reached with 5500 steps. Gelman-Rubin's R: 1.0314. (500 final count of samples).
ans2
ESTIMATION OF ANNOTATED PHYLOGENETIC TREE
Call: aphylo_mcmc(model = dat ~ mu_d + mu_s + Pi, priors = bprior(c(9,
1, 1, 1, 5), c(1, 9, 9, 9, 5)), control = list(nsteps = 5000,
burnin = 500, thin = 10, nchains = 2))
LogLik (unnormalized): -20.0599
Method used: mcmc (5500 steps)
# of Leafs: 50
# of Functions 1
# of Trees: 1
Estimate Std. Err.
mu_d0 0.9093 0.0827
mu_d1 0.1608 0.0767
mu_s0 0.1015 0.0669
mu_s1 0.1022 0.0443
Pi 0.5318 0.1443
plot(
ans2,
nsample = 200,
loo = TRUE,
ncores = 2L
)
# MCMC Diagnostics with coda
library(coda)
gelman.diag(ans2$hist)
Potential scale reduction factors:
Point est. Upper C.I.
mu_d0 1.00 1.02
mu_d1 1.02 1.11
mu_s0 1.00 1.01
mu_s1 1.01 1.06
Pi 1.01 1.02
Multivariate psrf
1.03
plot(ans2$hist)
pred <- prediction_score(ans2, loo = TRUE)
pred
Prediction score (H0: Observed = Random)
N obs. : 99
Observed : 0.71 ***
Random : NA
P(<t) : 0.0000
--------------------------------------------------------------------------------
Values scaled to range between 0 and 1, 1 being best.
Significance levels: *** p < .01, ** p < .05, * p < .10
AUC 0.79.
MAE 0.29.
plot(pred)
During the development process, we decided to allow the user to choose what ‘tree-reader’ function he would use, particularly between using either the rncl R package or ape. For such, we created a short benchmark that compares both functions here.