forked from fanxiule/CRD_Fusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrd_fusion_net.py
135 lines (116 loc) · 5.35 KB
/
crd_fusion_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import torch
import torch.nn as nn
import networks
class CRDFusionNet(nn.Module):
def __init__(self, scale_list, max_disp, img_h, img_w, baseline=False, fusion=True):
"""
The high-level module for the whole network
:param scale_list: list of exponents for all feature scales used in the network, e.g. [0, 3] or [0, 1, 2, 3]
:param max_disp: maximum number of disparities after image downscaling is applied
:param img_h: height of the input image
:param img_w: width of the input image
:param baseline: if set to True, the baseline model is used. Default to False
:param fusion: if set to True, raw disparity fusion applied to disparity regression module. Default to True
"""
super(CRDFusionNet, self).__init__()
self.models = nn.ModuleDict()
down_scale = 1 / (2 ** scale_list[-1])
max_disp_at_scale = int(max_disp * down_scale)
if baseline: # use baseline modules
self.models['extractor'] = networks.BaselineExtractor(scale_list[-1])
self.models['disp_refine'] = networks.BaselineRefiner(scale_list)
else: # use the proposed modules
self.models['extractor'] = networks.FeatureExtractor(scale_list[-1])
self.models['disp_refine'] = networks.DispRefiner(scale_list, img_h, img_w)
# common modules
self.models['disp_proc'] = networks.DispProcessor(max_disp_at_scale, down_scale)
self.models['cost_gen'] = networks.CostGenerator(max_disp_at_scale)
self.models['disp_est'] = networks.DispEstimator()
self.models['disp_reg'] = networks.DispRegressor(max_disp_at_scale, fusion)
def get_params(self):
"""
Obtain number of parameters in the model
:return: List of all model parameters
"""
parameters_to_train = []
for k in self.models:
parameters_to_train += list(self.models[k].parameters())
return parameters_to_train
def to(self, *args, **kwargs):
"""
Override the default to() function to make sure everything in the model can be put to the proper device
::param args:
:param kwargs:
:return: None
"""
for k in self.models:
self.models[k].to(*args, **kwargs)
@staticmethod
def _weight_init(m):
"""
Initialize a layer's weight according to normal distribution and its bias terms with zeros
:param m: a layer in tensor form
:return: None
"""
if isinstance(m, nn.Conv2d):
torch.nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
elif isinstance(m, nn.Conv3d):
torch.nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
torch.nn.init.zeros_(m.bias)
def init_model(self):
"""
Initialize the model's weights and bias terms
:return: None
"""
for k in self.models:
self.models[k].apply(self._weight_init)
def forward(self, l_rgb, r_rgb, raw_disp, conf_mask):
"""
Forward pass of the complete model
:param l_rgb: left RGB tensor
:param r_rgb: right RGB tensor
:param raw_disp: raw disparity tensor normalized between [0, 1]
:param conf_mask: confidence mask tensor
:return: outputs containing prelim disp, refined disp, and occlusion mask (if applicable)
"""
l_feature = self.models['extractor'](l_rgb)
r_feature = self.models['extractor'](r_rgb)
low_res_raw_disp, low_res_conf = self.models['disp_proc'](raw_disp, conf_mask)
cost = self.models['cost_gen'](l_feature[-1], r_feature[-1])
cost = self.models['disp_est'](cost)
prelim_disp = self.models['disp_reg'](cost, low_res_raw_disp, low_res_conf)
output = self.models['disp_refine'](l_feature, r_feature, prelim_disp)
output['prelim_disp'] = prelim_disp
return output
def save_model(self, save_path):
"""
Save weights of the model
:param save_path: directory to the folder that will store the .pth checkpoint files
:return: None
"""
for model_name, m in self.models.items():
weights_to_save = m.state_dict()
if len(weights_to_save) != 0:
checkpt_path = os.path.join(save_path, "%s.pth" % model_name)
torch.save(weights_to_save, checkpt_path)
def load_model(self, model_path):
"""
Load pretrained weights to the model
:param model_path: directory to the folder storing the pretrained .pth checkpoint files
:return: None
"""
checkpt_list = os.listdir(model_path)
for checkpt in checkpt_list:
if checkpt != "adam.pth":
model_name, ext = checkpt.split(".")
assert ext == "pth", "Non-checkpoint file(s) found in the provided directory"
print("Loading pretrained weights for %s" % model_name)
model_dict = self.models[model_name].state_dict()
pretrained_dict = torch.load(os.path.join(model_path, checkpt))
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.models[model_name].load_state_dict(model_dict)