-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy patharray_disc.py
executable file
·86 lines (66 loc) · 3 KB
/
array_disc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#! /usr/bin/env python3
"""Array discordance"""
import TopmedPipeline
import sys
import os
from argparse import ArgumentParser
from copy import deepcopy
description = """
"""
parser = ArgumentParser(description=description)
parser.add_argument("config_file", help="configuration file")
parser.add_argument("--n_segments", default="1",
help="number of sample blocks")
parser.add_argument("--cluster_type", default="UW_Cluster",
help="type of compute cluster environment [default %(default)s]")
parser.add_argument("--cluster_file", default=None,
help="json file containing options to pass to the cluster")
parser.add_argument("--verbose", action="store_true", default=False,
help="enable verbose output to help debug")
parser.add_argument("-e", "--email", default=None,
help="email address for job reporting")
parser.add_argument("--print_only", action="store_true", default=False,
help="print cluster commands without submitting")
parser.add_argument("--version", action="version",
version="TopmedPipeline "+TopmedPipeline.__version__,
help="show the version number and exit")
args = parser.parse_args()
configfile = args.config_file
n_segments = args.n_segments
cluster_file = args.cluster_file
cluster_type = args.cluster_type
email = args.email
print_only = args.print_only
verbose = args.verbose
version = "--version " + TopmedPipeline.__version__
cluster = TopmedPipeline.ClusterFactory.createCluster(cluster_type, cluster_file, verbose)
pipeline = cluster.getPipelinePath()
submitPath = cluster.getSubmitPath()
driver = os.path.join(submitPath, "runRscript.sh")
configdict = TopmedPipeline.readConfig(configfile)
configdict = TopmedPipeline.directorySetup(configdict, subdirs=["config", "data", "log"])
# analysis init
cluster.analysisInit(print_only=print_only)
job = "array_disc"
rscript = os.path.join(pipeline, "R", job + ".R")
config = deepcopy(configdict)
config["out_prefix"] = configdict["data_prefix"]
configfile = configdict["config_prefix"] + "_" + job + ".config"
TopmedPipeline.writeConfig(config, configfile)
if int(n_segments) > 1:
segments = "1-" + n_segments
else:
segments = "1"
jobid = cluster.submitJob(job_name=job, cmd=driver, args=["-s", rscript, configfile, version, "--n_segments " + n_segments], array_range=segments, email=email, print_only=print_only)
job = "array_disc_combine"
rscript = os.path.join(pipeline, "R", job + ".R")
jobid = cluster.submitJob(job_name=job, cmd=driver, args=[rscript, configfile, version], holdid=[jobid], email=email, print_only=print_only)
# post analysis
bname = "post_analysis"
job = "array_disc" + "_" + bname
jobpy = bname + ".py"
pcmd=os.path.join(submitPath, jobpy)
argList = ["-a", cluster.getAnalysisName(), "-l", cluster.getAnalysisLog(),
"-s", cluster.getAnalysisStartSec()]
cluster.submitJob(binary=True, job_name=job, cmd=pcmd, args=argList,
holdid=[jobid], print_only=print_only)