-
Notifications
You must be signed in to change notification settings - Fork 0
/
counter.py
290 lines (251 loc) · 10.5 KB
/
counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
########People counter#########
# Author: UBAID ALI
# Date: 11/02/20
# Description:
# This program uses a TensorFlow classifier & open cv to perform people counting.
# This program count people in frame by passing through two line up and down and add and subratect people from frame
# It draws boxes and scores around the objects of interest in each frame from the camera and video.
# IT also uses a variable for counting the no. of objects in the frame.
import numpy as np
import cv2
import Person
import time
cnt_up = 0
cnt_down = 0
count_up = 0
count_down = 0
state =0
#Taking the video input
#cap = cv2.VideoCapture(0)
cap = cv2.VideoCapture("Video.mp4")
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter('output1.mkv',fourcc, 20.0, (640,480))
##cap.set(3,160) #Width
##cap.set(4,120) #Height
#Print the capture properties to console
for i in range(19):
print (i, cap.get(i))
w = cap.get(3)
h = cap.get(4)
frameArea = h*w
areaTH = frameArea/300
print ('Area Threshold', areaTH)
#Lines coordinate for counting
line_up = int(1*(h/5))
line_down = int(4*(h/5))
up_limit = int(.5*(h/5))
down_limit = int(4.5*(h/5))
print ("Red line y:",str(line_down))
print ("Blue line y:", str(line_up))
line_down_color = (255,0,0)
line_up_color = (0,0,255)
pt1 = [0, line_down];
pt2 = [w, line_down];
pts_L1 = np.array([pt1,pt2], np.int32)
pts_L1 = pts_L1.reshape((-1,1,2))
pt3 = [0, line_up];
pt4 = [w, line_up];
pts_L2 = np.array([pt3,pt4], np.int32)
pts_L2 = pts_L2.reshape((-1,1,2))
pt5 = [0, up_limit];
pt6 = [w, up_limit];
pts_L3 = np.array([pt5,pt6], np.int32)
pts_L3 = pts_L3.reshape((-1,1,2))
pt7 = [0, down_limit];
pt8 = [w, down_limit];
pts_L4 = np.array([pt7,pt8], np.int32)
pts_L4 = pts_L4.reshape((-1,1,2))
#Background Substractor
fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True)
#Structuring elements for morphographic filters
kernelOp = np.ones((3,3),np.uint8)
kernelOp2 = np.ones((5,5),np.uint8)
kernelCl = np.ones((11,11),np.uint8)
#Variables
font = cv2.FONT_HERSHEY_SIMPLEX
persons = []
rect_co = []
max_p_age = 1
pid = 1
val = []
while(cap.isOpened()):
##for image in camera.capture_continuous(rawCapture, format="bgr", use_video_port=True):
ret, frame = cap.read()
## frame = image.array
# for i in persons:
# print i.age_one() #age every person one frame
#Apply background subtraction
fgmask = fgbg.apply(frame)
fgmask2 = fgbg.apply(frame)
#Binarization to eliminate shadows
try:
ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY)
ret,imBin2 = cv2.threshold(fgmask2,200,255,cv2.THRESH_BINARY)
#Opening (erode->dilate) to remove noise.
mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernelOp)
mask2 = cv2.morphologyEx(imBin2, cv2.MORPH_OPEN, kernelOp)
#Closing (dilate -> erode) to join white regions.
mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kernelCl)
mask2 = cv2.morphologyEx(mask2, cv2.MORPH_CLOSE, kernelCl)
except:
print('EOF')
print ('UP:',cnt_up+count_up)
print ('DOWN:',cnt_down+count_down)
break
#################
# CONTOURS #
#################
# RETR_EXTERNAL returns only extreme outer flags. All child contours are left behind.
contours0, hierarchy = cv2.findContours(mask2,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours0:
rect = cv2.boundingRect(cnt)
# print rect_co
# if rect[2] > 100:
# if rect[1]!=0:
# rect_co.append(rect[1])
# if len(rect_co)>=2:
# if (rect_co[-1]-rect_co[-2]) > 0:
# count_down = rect[2]/60
# count_up = 0
# print 'down' ,count_down
# elif (rect_co[-1]-rect_co[-2]) < 0:
# count_up = rect[2]/60
# count_down = 0
# print 'up',count_up
# continue
area = cv2.contourArea(cnt)
if area > areaTH:
#################
# TRACKING #
#################
#Missing conditions for multipersons, outputs and screen entries
M = cv2.moments(cnt)
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
x,y,w,h = cv2.boundingRect(cnt)
# print 'working'
# print w
new = True
if cy in range(up_limit,down_limit):
for i in persons:
if abs(cx-i.getX()) <= w and abs(cy-i.getY()) <= h:
# the object is close to one that has already been detected before
# print 'update'
new = False
i.updateCoords(cx,cy) #update coordinates in the object and resets age
if i.going_UP(line_down,line_up) == True:
if w > 100:
count_up = w/60
#cnt_up += count_up
print ()
else:
cnt_up += 1;
print ("ID:",i.getId(),'crossed going up at',time.strftime("%c"))
elif i.going_DOWN(line_down,line_up) == True:
if w > 100:
count_down = w/60
#cnt_down += count_down
else:
cnt_down += 1;
print ("ID:",i.getId(),'crossed going down at',time.strftime("%c"))
break
if i.getState() == '1':
if i.getDir() == 'down' and i.getY() > down_limit:
i.setDone()
elif i.getDir() == 'up' and i.getY() < up_limit:
i.setDone()
if i.timedOut():
#get out of the people list
index = persons.index(i)
persons.pop(index)
del i #free the memory of i
if new == True:
p = Person.MyPerson(pid,cx,cy, max_p_age)
persons.append(p)
pid += 1
# new = True
# print cy
# if cy in range(up_limit,down_limit):
# for i in persons:
# if abs(cx-i.getX()) <= w and abs(cy-i.getY()) <= h:
# # the object is close to one that has already been detected before
# new = False
# i.updateCoords(cx,cy)
# val = i.getTracks() #update coordinates in the object and resets age
# print val
# # print new
# if new == True:
# p = Person.MyPerson(pid,cx,cy, max_p_age)
# persons.append(p)
# pid += 1
# # print 'person length',len(persons)
# if len(val)>=2:
# if (val[-1][1]-val[-2][1]) > 0:
# cnt_down += 1;
# state='1'
# getdir = 'down'
# # print "ID:",i.getId(),'crossed going up at',time.strftime("%c")
# elif (val[-1][1]-val[-2][1]) < 0:
# cnt_up += 1;
# state = '1'
# getdir = 'up'
# # print "ID:",i.getId(),'crossed going down at',time.strftime("%c")
# val = []
# if state == '1':
# if getdir == 'down':
# done=True
# elif getdir == 'up':
# done = True
# if done:
# #get out of the people list
# j=persons[0]
# # print j
# index = persons.index(j)
# persons.pop(index)
# # print "delete"
# del j #free the memory of i
#################
# DRAWINGS #
#################
cv2.circle(frame,(cx,cy), 5, (0,0,255), -1)
img = cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
#cv2.drawContours(frame, cnt, -1, (0,255,0), 3)
#END for cnt in contours0
#########################
# DRAWING TRAJECTORIES #
#########################
for i in persons:
## if len(i.getTracks()) >= 2:
## pts = np.array(i.getTracks(), np.int32)
## pts = pts.reshape((-1,1,2))
## frame = cv2.polylines(frame,[pts],False,i.getRGB())
## if i.getId() == 9:
## print str(i.getX()), ',', str(i.getY())
cv2.putText(frame, str(i.getId()),(i.getX(),i.getY()),font,0.3,i.getRGB(),1,cv2.LINE_AA)
#################
# DISPLAY ON FRAME #
#################
str_up = 'UP: '+ str(cnt_up+count_up)
str_down = 'DOWN: '+ str(cnt_down+count_down)
frame = cv2.polylines(frame,[pts_L1],False,line_down_color,thickness=2)
frame = cv2.polylines(frame,[pts_L2],False,line_up_color,thickness=2)
frame = cv2.polylines(frame,[pts_L3],True,(255,255,255),thickness=1)
frame = cv2.polylines(frame,[pts_L4],False,(255,255,255),thickness=1)
cv2.putText(frame, str_up ,(10,40),font,0.5,(255,255,255),2,cv2.LINE_AA)
cv2.putText(frame, str_up ,(10,40),font,0.5,(0,0,255),1,cv2.LINE_AA)
cv2.putText(frame, str_down ,(10,90),font,0.5,(255,255,255),2,cv2.LINE_AA)
cv2.putText(frame, str_down ,(10,90),font,0.5,(255,0,0),1,cv2.LINE_AA)
cv2.putText(frame, "SMART SECURITY SYSTEM",(300,200),font,1,(255,0,0),2)
out.write(frame)
cv2.imshow('Frame',frame)
#cv2.imshow('Mask',mask)
#Press ESC to exit
k = cv2.waitKey(30) & 0xff
if k == 27:
break
#END while(cap.isOpened())
#################
# CLOSING #
#################
cap.release()
cv2.destroyAllWindows()