-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_instruct.py
executable file
·302 lines (263 loc) · 11.9 KB
/
train_instruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# !/usr/bin/python
# -*- coding: utf-8 -*-
import os
os.environ["WANDB_PROJECT"] = "phonelm"
os.environ["TOKENIZERS_PARALLELISM"] = "false" # avoid deadlock
import wandb
import argparse
import torch
from transformers import (
AutoTokenizer,
TrainingArguments,
)
from trl import SFTTrainer, SFTConfig
from datasets import load_dataset, concatenate_datasets, load_from_disk
from config import Config
from modeling_phonelm import PhoneLMForCausalLM
from utils import *
# ==========================================
args = argparse.ArgumentParser(description="Train a model.")
args.add_argument("--local_rank", type=int, default=-1)
args.add_argument("--config", type=str, default="config.yaml")
arg = args.parse_args()
config = Config(arg.config)
FLG_WANDB = config.get("wandb", False)
PROF = config.get("profile", False)
RESUME = config.get("resume", False)
train_name = config.get("name", "phonelm")
use_bf16 = config.get("training.use_bf16", True)
context_size = config.get("training.context_size", 2048)
output_dir = config.get("training.output_dir", f"./checkpoints/{train_name}")
num_train_epochs = config.get("training.num_train_epochs", 10)
learning_rate = float(config.get("training.learning_rate", 1e-4))
adam_beta1 = config.get("training.adam_beta1", 0.9)
adam_beta2 = config.get("training.adam_beta2", 0.95)
adam_epsilon = float(config.get("training.adam_epsilon", 1e-8))
weight_decay = config.get("training.weight_decay", 0.1)
deepspeed_config = config.get("training.deepspeed_config", "./ds_config_decaylr.json")
per_device_train_batch_size = int(config.get("training.per_device_train_batch_size", 32))
per_device_eval_batch_size = int(config.get("training.per_device_eval_batch_size", 48))
gradient_checkpointing = config.get("training.gradient_checkpointing", True)
gradient_accumulation_steps = int(config.get("training.gradient_accumulation_steps", 1))
set_logging_steps = int(config.get("training.set_logging_steps", 20))
set_eval_steps = int(config.get("training.set_eval_steps", 1000))
set_save_steps = int(config.get("training.set_save_steps", 2000))
bad_epochs_limit = int(config.get("training.bad_epochs_limit", 5))
warmup_ratio = float(config.get("training.warmup_ratio", 0.10))
warmup_steps = config.get("training.warmup_steps", None)
warmup_steps = int(warmup_steps) if warmup_steps is not None else None
max_steps = int(config.get("training.max_steps", -1))
# ==========================================
print(f"config: {config.config}")
def load_and_split_data(file_path, split_ratio=0.005):
"""
Load the specified file and split it into training and validation sets.
Parameters:
- file_path: Path to the file.
- split_ratio: Proportion of the validation set in the total dataset.
Returns:
- Split datasets, including training and validation sets.
"""
print("Split ratio:", split_ratio)
# File format
data_type = config.get("datasets.data_type", "parquet")
dataset = load_dataset(data_type, data_files=file_path)
# Split dataset
split_dataset = dataset['train'].train_test_split(test_size=split_ratio)
# Ensure the split dataset contains 'train' and 'test' keys
if 'train' in split_dataset and 'test' in split_dataset:
return split_dataset['train'], split_dataset['test']
else:
raise ValueError("Dataset split failed, training and validation sets not generated.")
def build_sft_dataset(data_path, split_ratio=0.005):
"""
Build the training and validation datasets for SFT.
Parameters:
- data_path: Path to the directory containing the sft data files.
- split_ratio: Proportion of the validation set in the total dataset.
Returns:
- Training and validation datasets.
"""
train_datasets = []
val_datasets = []
train_dataset_path = os.path.join(data_path, 'train_dataset_test')
val_dataset_path = os.path.join(data_path, 'val_dataset_test')
print(train_dataset_path)
print(val_dataset_path)
if os.path.isdir(train_dataset_path) and os.path.isdir(val_dataset_path):
# Load previously saved datasets
train_datasets = load_from_disk(train_dataset_path)
print("Train dataset loaded successfully")
val_datasets = load_from_disk(val_dataset_path)
print("Validation dataset loaded successfully")
return train_datasets, val_datasets
# Traverse all files in the processed_chat directory
for root, dirs, files in os.walk(data_path):
for file in files:
file_path = os.path.join(root, file)
print(f"Processing file: {file_path}")
# Load and split dataset
train_dataset, val_dataset = load_and_split_data(file_path)
# Add the current file's training and validation sets to the list
train_datasets.append(train_dataset)
val_datasets.append(val_dataset)
# Combine all files' training and validation sets
combined_train_dataset = concatenate_datasets(train_datasets).shuffle(seed=42)
combined_val_dataset = concatenate_datasets(val_datasets).shuffle(seed=42)
print(f"Total training set size: {len(combined_train_dataset)}")
print(f"Total validation set size: {len(combined_val_dataset)}")
return combined_train_dataset, combined_val_dataset
def train(tokenizer, model, train_dataset, val_dataset):
# Set training arguments
args = dict(
# We do not dispatch the dataloader, so each process will load the full dataset and pick by process index.
accelerator_config={
"dispatch_batches": False
},
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
per_device_eval_batch_size=per_device_eval_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
gradient_checkpointing=gradient_checkpointing,
metric_for_best_model="eval_loss",
max_steps=max_steps,
bf16=use_bf16,
fp16=not use_bf16,
learning_rate=learning_rate,
adam_beta1=adam_beta1,
adam_beta2=adam_beta2,
adam_epsilon=adam_epsilon,
weight_decay=weight_decay,
num_train_epochs=num_train_epochs,
warmup_ratio=warmup_ratio,
# logging & evaluation strategies
logging_dir="logs",
logging_strategy="steps",
logging_steps=set_logging_steps, # Log every set_logging_steps steps
eval_strategy="steps",
eval_steps=set_eval_steps, # Evaluate every set_eval_steps steps
save_steps=set_save_steps,
save_total_limit=6,
load_best_model_at_end=True,
deepspeed=deepspeed_config, # Path to deepspeed config file
report_to="all" if FLG_WANDB else "none",
)
if warmup_steps is not None:
args["warmup_steps"] = warmup_steps
training_args = SFTConfig(
packing=config.get("datasets.packing", True),
max_seq_length=context_size,
**args
)
print("Training arguments:", training_args)
train_id = "local"
if PROF:
with torch.profiler.profile(
activities=[
torch.profiler.ProfilerActivity.CPU,
torch.profiler.ProfilerActivity.CUDA,
],
schedule=torch.profiler.schedule(
skip_first=3, wait=1, warmup=1, active=2, repeat=1
),
on_trace_ready=lambda p: trace_handler(p, arg.local_rank),
with_stack=True,
profile_memory=True,
experimental_config=torch._C._profiler._ExperimentalConfig(verbose=True),
) as prof:
# Model training
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics= None,
tokenizer=tokenizer,
callbacks=(
[EvaluateCallback(bad_epochs_limit, arg.local_rank, FLG_WANDB), TraceCallback(prof)]
if PROF and is_main_process_using_local_rank(arg.local_rank)
else [EvaluateCallback(bad_epochs_limit, arg.local_rank, FLG_WANDB)]
),
)
trainer.train(resume_from_checkpoint=RESUME)
else:
try:
train_id = wandb.run.id if (FLG_WANDB and is_main_process_using_local_rank(arg.local_rank)) else "local"
print(f"Training ID: {train_id}")
except:
train_id = "latest"
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
compute_metrics= None,
tokenizer=tokenizer,
callbacks=[EvaluateCallback(bad_epochs_limit, arg.local_rank, FLG_WANDB)],
)
print("Start training")
trainer.train(resume_from_checkpoint=RESUME)
print("Training finished")
best_path = os.path.join(output_dir, "best_ckpt")
trainer.save_model(best_path)
save_phoinelm_hf(output_dir, trainer.model.dtype)
if FLG_WANDB and is_main_process_using_local_rank(arg.local_rank):
wandb.config.update({"best_path": best_path})
if __name__ == "__main__":
if FLG_WANDB:
if is_main_process_using_local_rank(arg.local_rank):
wandb.init(
# set the wandb project where this run will be logged
project="phonelm",
name=train_name,
config={
"output_dir": output_dir,
"num_train_epochs": num_train_epochs,
"learning_rate": learning_rate,
"deepspeed_config": deepspeed_config,
"per_device_train_batch_size": per_device_train_batch_size,
"per_device_eval_batch_size": per_device_eval_batch_size,
"gradient_accumulation_steps": gradient_accumulation_steps,
"set_logging_steps": set_logging_steps,
"set_eval_steps": set_eval_steps,
"set_save_steps": set_save_steps,
"config_file": config.config,
},
# track hyperparameters and run metadata
)
wandb.alert(title="PhoneLM", text="Start training")
tokenizer = AutoTokenizer.from_pretrained("./tokenizer")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("load base model")
checkpoint_path = config.get("training.base_dir", f"./checkpoints/phonelm-1.5B_stage2/best_ckpt")
print("================BASE:", checkpoint_path, "================\n")
model = PhoneLMForCausalLM.from_pretrained(checkpoint_path, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16)
if gradient_checkpointing:
model.config.use_cache = False
if config.get("training.use_lora", False):
from peft import LoraConfig, get_peft_model
from peft import PeftModel
peft_config = LoraConfig(
r=config.get("lora.r", 1),
lora_alpha=config.get("lora.alpha", 16),
lora_dropout=config.get("lora.dropout", 0.1),
bias="none",
task_type="CAUSAL_LM",
# q_proj,k_proj,gate_proj,down_proj,up_proj
target_modules=["q_proj", "k_proj", "gate_proj", "down_proj", "up_proj"],
)
if gradient_checkpointing:
# https://discuss.huggingface.co/t/peft-lora-gpt-neox-backward-pass-failing/35641/6
# need this to fix when using gradient checkpointing and lora
model.enable_input_require_grads()
model = get_peft_model(model, peft_config)
print(f"model loaded: {model}")
print("load data")
data_path = config.get("datasets.path","./train_datasets_instruct")
train_dataset, val_dataset = build_sft_dataset(data_path)
print(f"train dataset: {train_dataset}")
print("train")
train(tokenizer, model, train_dataset, val_dataset)
if FLG_WANDB:
wandb.finish()