Skip to content

Latest commit

 

History

History
59 lines (47 loc) · 1.64 KB

README.md

File metadata and controls

59 lines (47 loc) · 1.64 KB

You can evaluate ChartVLM model on ChartX benchmark via the following steps:

cd eval

Download benchmark ChartX

Put ChartX under the path eval/ChartX

Inference using ChartVLM

Use ChartVLM model to perform the inference process:

python infer_ChartX.py \
--model_path ${PATH_TO_CHARTVLM_MODEL}$ \
--benchmark_json_path ${PATH_TO_JSON_FILE_IN_OFIICIAL_CHARTX_FOLDER}$ 

The output json file will be saved under eval/infer_result.

Evaluation on chart-related tasks

We adopt Structuring Chart-oriented Representation Metric (SCRM) for Structrual Extraction (SE) task, GPT-acc metric for Question-Answering task, and GPT-score metric for description task, summarization task and redrawing code task.

${PATH_TO_INFERENCE_RESULT_JSON_FILE}$ indicates the inference results saved in eval/infer_result.

*For Structrual Extraction (SE):

python eval_SE_ChartX.py \ 
--infer_result_dir ${PATH_TO_INFERENCE_RESULT_JSON_FILE}$ 

*For Question Answering:

python eval_qa_ChartX.py \
--infer_result_dir ${PATH_TO_INFERENCE_RESULT_JSON_FILE}$ \ 
--your_openai_key ${YOUR_OPENAI_KEY}$

*For Description:

python eval_des_ChartX.py \
--infer_result_dir ${PATH_TO_INFERENCE_RESULT_JSON_FILE}$ \ 
--your_openai_key ${YOUR_OPENAI_KEY}$

*For Summarization:

python eval_sum_ChartX.py \
--infer_result_dir ${PATH_TO_INFERENCE_RESULT_JSON_FILE}$ \ 
--your_openai_key ${YOUR_OPENAI_KEY}$

*For Redrawing code:

python eval_redraw_code_ChartX.py \
--infer_result_dir ${PATH_TO_INFERENCE_RESULT_JSON_FILE}$ \ 
--your_openai_key ${YOUR_OPENAI_KEY}$

Note that all the evaluation result log file will be saved under eval/eval_result